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0.1 Introduction

0.1.1 General notions: automorphism, Koopman operator, iso-
morphism, factor

By a dynamical system we mean a quadruple (X, B, u, T'), where (X, B, u) is a
probability standard Borel space and T' is a bimeasurable (T'B = TB = B)
bijection of X which is measure-preserving (u(A) = u(T1A) = p(TA) for
each A € B). Then T is called an automorphism of (X, B, 1) and we will often
write T': (X, B, u) — (X, B, ). By Aut(X, B, 1) we denote the group of all
automorphisms of (X, B, u). Each T € Aut(X,B, ) determines a unitary
operator Ur (called the Koopman operator associated to T') of L*(X, B, u) :
Ur(f) = foT for each f € L*(X, B, p).

In order to classify dynamical systems, we usually use metric isomorphism
(the measure-theoretic isomorphism). Recall that T; € Aut(X;, B;, p;),1 =
1,2, are said to be metrically isomorphic if there exists an isomorphism S :
(X1, Bi, 1) — (X, Ba, o) (of probability spaces) such that So T} = Ty o
S. If S is only assumed to be (a.e.) surjective, measurable and “measure-
preserving” then S is called a homomorphism and T, is called a factor of

Ti.

0.1.2 Equivalence notions and relations between them: metric,
weak and spectral isomorphism, Markov quasi-similarity

It follows that measure-theoretic isomorphism implies spectral equivalence
(isomorphism) of the corresponding unitary operators; indeed, Ug-1 :
LQ(XhBl,Ml) - L2(X27B27M2>7 Us—1f = foS™ for f € L2(X1731,M1)
settles a unitary equivalence of Uy, and Up,. It is a classical fact that
the converse does not hold, see [4] for historically one of the first relevant
exampled] Other classical examples of spectrally isomorphic and metric-
ally non-isomorphic dynamical systems arise when we consider the class of
Bernoulli shifts: all of them are spectrally isomorphic while the entropy clas-
sify them measure-theoretically (see [38]).

We now present two other concepts of equivalence of dynamical systems
situated between spectral isomorphism and measure-theoretic isomorph-

IThese are examples as in below. If we take the automorphism T defined in
and consider T : (z,9) — (z4+a,22+y) then T and T are spectrally isomorphic but
are not metrically isomorphic. It is a particular case of spectral isomorphism in the class
of quasi-discrete spectrum automorphisms considered in Chapter [3} two automorphisms
with quasi-discrete spectrum are spectrally isomorphic if and only if they have the same
discrete spectrum.
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ism. In [47], Sinai introduced the notion of weak isomorphism. Two
automorphisms T; € Aut(X;,B;, i;), i = 1,2, are said to be weakly iso-
morphic if there exist homomorphisms Sy : (X1, By, 1) — (Xa, Bs, p2) and
Sy 1 (Xa, By, pi2) — (Xy, By, p1) such that S;0T; =Ty0S8;, SyoTy, =T10.08s,
i.e. T7 and T, are factors of each other. Clearly, metric isomorphism implies
weak isomorphism while the converse does not hold; for relevant examples,
see e.g. [23], [42], [43], [49]. It is already shown in [47] that weak isomorphism
implies spectral isomorphis

In order to introduce the fourth concept of equivalence of automorphisms,
first, recall that a linear contraction

d . LQ(Xl,Bl,PJl) — Lz(X%BQa,u?)

is called a Markov operator if ®1 = 1 = ®*1 and ® “preserves” the cone of
non-negative functions (®f > 0 whenever 0 < f € L*(Xy, By, j11)).

In [50], Vershik introduced a new concept for classification of dynamical
systems by considering the notion of Markov quasi-similarity: two auto-
morphisms T; € Aut(X;, By, pi), ¢ = 1,2, are called Markov quasi-similar
(MQS) if there are Markov operators

(I) : LQ(le 817 ,ul) — L2<X27 827 H?)a \Ij : LQ(X% 827 /~L2) — Lz(Xla Bla ,ul)
both with dense ranges, satisfying the intertwining conditionsﬂ

SoUp =Upo®, YVoUp =Up oV.

Clearly, each Koopman operator is also Markov but not vice-versa. If
however, a Markov operator ® intertwinning 77 and 75 is unitary, then it is
Koopman, i.e. ® = Ug-1, where S settles an isomorphism of 77 and 75 (see
e.g. [29], [50]). Tt is easy to see that weak isomorphism implies Markov quasi-
similarity (indeed, USTll, US_21 yield a Markov quasi-similarity). Moreover,
Markov quasi-similarity implies spectral isomorphism, see e.g. [13]E|.

The relations between the four notions of equivalence can be now sum-
marized as follows:

2The converse again is false: the automorphisms T and T mentioned in footnote [1] are
spectrally isomorphic but are not weakly isomorphic. In fact, weak isomorphism implies
isomorphism in the class of quasi-discrete spectrum automorphisms (see Remark and
Theorem .

3Similarly to the notion of factor, if only ® above exists then one says that T, is a
Markov quasi-factor (MQF) of T;. Recall that an MQF of an ergodic T is ergodic ([13]).

4Tt is also noted in [I3] that Ty = T x B, where T is an irrational rotation, B a
Bernoulli automorphism and T defined in are spectrally isomorphic but are not
Markov quasi-similar.
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metric —(T—l)—> weak —(r—21> MQS —(T—?’L spectral

isomorphism isomorphism isomorphism

0.1.3 Vershik's question on Markov quasi-similarity.  Markov
quasi-factors of quasi-discrete spectrum automorphisms

We have already noticed that (r1) and (r3) cannot be reversed and it was
one of main questions by Vershik in [50] whether (r2) can be reversed. The
negative answer to this question was given recently in [13]. The construction
in [I3] is given in the class of so called compact Abelian group extensions of
(ergodic) rotations. In connection with it two natural questions arise.

First of all, the examples from [I3] are not weakly mixing, so one can
ask whether the negative answer to Vershik’s question can be obtained in
a class of transformations with better mixing properties. The second group
of questions arises when we think about finding simpler (or more “natural”)
examples of MQS automorphisms which are not weakly isomorphic. Such
examples, of course, cannot be found in the class of discrete spectrum auto-
morphisms (ergodic rotations) as here already spectral isomorphism and met-
ric isomorphism coincideE] but the problem seems to be completely open in
the class of automorphisms with quasi-discrete spectrumE] (the latter class of
automorphisms was introduced by Abramov in [2]). To handle such a prob-
lem, it seems to be natural, first, to understand Markov quasi-factors of an
automorphism.

We will not really deal with the latter problem in the thesis, although
we will noticeﬂ in Chapter (3| (see Theorem that Markov quasi-factors
of quasi-discrete spectrum automorphism have quasi-discrete spectrum. The
theorem is a generalization of a classical result by Hahn and Parry [I7] saying
that every factor of an automorphism with quasi-discrete spectrum also has
quasi-discrete spectrum. The problem of Markov quasi-factors will be rather
a motivation for us to see some further relations with the theory of joinings
and the theory of ergodicity of affine cocycles.

5This is the classical Halmos-von Neumann Theorem, see e.g. [T1].

6 For the definition, see Section

"The result will be a consequence of the proof of the theorem by E. Lesigne [33] char-
acterizing quasi-discrete spectrum of a given order.
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0.1.4 Joinings and Markov quasi-factors

In order to see a relationship of MQS with the theory of joinings, notice that
each Markov operator

D LQ(XhBlaMI) — LQ(X27827M2)7 ®o UT1 = UTQ od

via the formula

/B O(1p, ) dys = / Ip, ® 1, dp (0.1.1)

X1 %X
determines a probability measure p on (X; X X5, B; ® Bs) such that:
(i) its marginals on X, Xy are p; and ps respectively,
(ii) pis T x Ty-invariant

(see e.g. [15]).

Each measure satisfying (i) and (ii) is called a joining of Ty and Ts. In fact,
there is a natural correspondence between Markov intertwining operators
and joinings (given by (0.1.1))). Hence, MQS requires the existence of special
joinings between two dynamical systems. To see deeper relations, recall that
given T; € Aut(X;, B;, 1;), @ > 1, by a joining of all these automorphisms
one means a probability measure p on (X; X Xo X ..., B; ® By ® ...) which
is 17 x Ty x .. ~invariant and has all one-dimensional marginals “correct” (as
in (i)). Note that each joining p yields a new automorphism 7} x Ty X ... €
Aut(X; x Xo X ..., By ®@ By ® ...,p). When all of T; are equal to T, one
speaks about infinite self-joinings of T'.

Here is the main result relating joinings and the theory of MQF ([13], see
also footnote 3)):

Theorem 0.1.1. Let T be an ergodic automorphism. If S is a Markov quasi-
factor of T then S is a (classical) factor of some infinite ergodic self-joining

of T.

0.1.5 Basic affine automorphism of T?

Coming back to quasi-discrete spectrum automorphisms, recall that the
simplest example from this class (which is not with discrete spectrum) is
the transformation T of the additive torus T? = [0,1)? (considered with
Lebesgue measure) given by the formula

T(x,y) =(x+ o,z +y), (0.1.2)
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where « is irrational. Even though the form of ergodic joinings (of all orders)
for T is known [}| and the form of factors of infinite ergodic self-joinings of
T is also known, the problem whether MQF of T are its classical factors is
open.

If we want to describe ergodic self-joinings of T, we study the ergodic
decomposition of the transformations of T%+? of the following form

(:L‘7 Y, Y2, -+, yd-l—l) = (IL‘—FOé, n +¢/(I), Y2 +¢/(x+51>7 <o Yd+1 +¢/(‘T+Bd))
with ¢'(x) = x. That is, we must study the ergodicity problem of the cocycleﬂ

Zi_i_l:T—)TdJrl’ ,d-i-]_:(¢/7¢losl,---,¢lo;5’d)’

where S;(z) = 2+ 5; (i = 1,...,d), and its ergodicity depends whether
some cohomological equations admit measurable solutions (see Chapter [2| for
details).

0.1.6 Real-valued cocycles, Rokhlin cocycles - toward the main
problems of dissertation

The situation becomes more complicated when we look at ¢ as a real-valued
cocycle. In order to do it, we replace ¢’ by ¢(z) =2 — 1 (¢: T — ]R)m We
now ask whether

®d+1 T — Rd+17 ®d+1 - (¢7¢O Sla .- ‘7¢O Sd) <013)

is ergodic or, more generally, regular.E

It is a classical fact that ©; = ¢ is ergodic for every irrational rotation
(see e.g. [40]). In the paper [28], it was shown that O, is regular whenever
a has bounded partial quotients.

The problem of regularity of cocycles (taking values in locally compact
second countable (l.c.s.c.) but not compact Abelian groups G, for example
G = R of the above form is still important in the theory of joinings.
Indeed, assume that 7" € Aut(X, B, p) is ergodic and let G be an Abelian
l.c.s.c. group. Assume that ¢ : X — G is a cocycle and let G = (R,) eq
be a (measurablﬂ measure-preserving) G-action on a probability standard

8This is a particular case of so called compact Abelian group extensions of rotations
for which joinings were described in [27].

9 For the definition, see Subsection

1Tn order to study ergodicity or regularity of integrable real-valued cocycle we must
have them centered.

HFor the definition, see

12Measurability of a G-action means the continuity of all maps G' > g — (U R, f1,f2) €C
for each fi, fo € L2(Y,C,v).
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Borel space (Y, C, v). Then the automorphism T, g € Aut(X XY, B&C, p®@v)
given by
T%g(l‘, y) = (T:U> R@(w)(Q))

is called a Rokhlin extension.

It turns out that self-joinings of higher order of T},  are strictly connected
with cocycles of the form above. Indeed, Theorem 3 in [2§8] gives a
full description of all ergodic self-joinings of T, ¢ whenever cocycles ©411 =
(p,p051,...,008,) are regular.

0.1.7 Strong regularity property

In what follows, we say that ¢ has the strong regularity property if all
cocycles © = Q441 = Ogp1(a, S1,...,S4) of the above form are regular (for
all parameters d, a, S1, ..., Sq).

The problem of strong regularity of affine cocycles is the main object
of study in the dissertation. One of the crucial observations (see Theorem
states that the diagonal subgroup Agy1 = {(¢,....t) : t € R} is always
included in the group of essential values of cocycle ©. Due to this, the
problem of strong regularity of affine cocycles is reduced to the problem of
regularity of (vectorial) step cocycles of the form

Dy(z) = (ﬂ[o,ﬂj) — Bj)j=1,....d- (0.1.4)

The problem of ergodicity or regularity of step functions, mainly in one
dimensional case, has been broadly studied in the literature, for instance
see [7], [8], [12], [30], [34], [37], [40]. We will generalize (see Theorem [0.1.2]
d = 2) the recent result from [52], where it was proved that ® = (1o1/2)(-) —
1/2,19,1/2)(-+7v) —1/2) is regular for each v € T and o with bounded partial
quotients.

0.1.8 Description of the content of the dissertation. Chapter 1

We now pass to a description of the content of the dissertation. In Chapter
[1 we recall some basics in ergodic theory that will be needed in what fol-
lows: necessary facts from spectral theory, mixing and rigidity properties,
induced automorphism, basic constructions (factors, extensions), coalescence
and weak isomorphism, joinings and Markov operators, introduction to the
theory of cocycles including the theory of Schmidt of essential values. We also
recall a few examples of dynamical systems (irrational rotations, automorph-
isms with discrete and quasi-discrete spectrum, Gaussian systems) that will
play special roles in the dissertation.
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0.1.9 Description of the content of the dissertation. Chapter 2

Chapter 2, containing original results, has been written on the base of [10]. It
begins by a further development of the theory of cocycles (Section 2.1) with
some new results on essential values of cocycles with values in an Abelian
l.c.s.c. group G and then in it is focused on the group G = R?. In Section 2.2,
we present detailed combinatorial lemmas relating dynamical properties of an
irrational rotation by o with the Diophantine approximation of o by rational
numbers. In Section 2.3, we deal with the crucial problem of representation
of (vectorial) step cocycles, in particular we introduce the notion of rational
step cocycles. The main results can be summarized as follows.

Theorem 0.1.2. Let &, be as in .
o ford=1, &, is reqular for every irrational rotation.
e Ford =2, if a has bounded partial quotients, then ®4 is reqular.

e For d = 3, if a has unbounded partial quotients, then there exists a
choice of (1, B2, B3 making ®4 a non-regular cocycle.

In Subsection 2.3.3, we also give sufficient conditions for the regularity
of step cocycles using methods based on Diophantine properties of the val-
ues of the integrals for rational cocycles or Diophantine properties of the
discontinuities of the cocycle.

Theorem 0.1.3. Let ® be a zero mean step function. If ® has well separated
dz’scontinuz’tieﬂ then the group of essential values E(P) includes the set
{o(z;): i=1,...,D} of the jumps at the discontinuities x; of ®. Moreover,
D is regular.

For a subset C' of discontinuities of ®, we denote o(C) = >, .cc o(z;) the
corresponding sum of jumps of .

Theorem 0.1.4. Suppose that there are two discontinuities x;,, xj, of ® and
a subsequence (qn,) of denominators of o such that for a constant k > 0 we
have

an”('rio - 'Tjo) - T(XH > K, v ’T’ < Qny,- <015)

3Let the points Yn,e TUn through the set of discontinuities of @, :=® + ®oT + ... +
® o 77! in the natural order. The cocycle is said to have well separated discontinuities
(wsd), if there are ¢ > 0 and an infinite set Q of denominators of « such that

Yab+1 — VYoo = ¢/q, Vg € Q, L€ {1,..., Dq}.
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Then, if the sum o(C') is # 0 for each non-empty proper subset C of the set
of discontinuities of ®, then ® has a non-trivial essential value.

In Section 2.4, we present some applications of the results from previous
sections to affine cocycles. In particular, in Section 2.4.3., we show that the
cocycle (0.1.3) is ergodic for a generic choice (both in the measure-theoretic,
as well as topological sense) of parameters (i, ..., Bq, d > 2.

0.1.10 Description of the content of the dissertation. Chapter 3

Chapter 3 is dedicated to the problem of Markov quasi-similarity and the
question of Vershik from Subsection In Section 3.1 we use the char-
acterization of eigenfunctions proved by Lesigne [32] to show the following
result:

Theorem 0.1.5. A Markov quasi-factor of an automorphism with quasi-
discrete spectrum has quasi-discrete spectrum.

The main result of Section 3.2 (written on the base [I4]) is the following
theorem:

Theorem 0.1.6. There exist mizing (of all orders) automorphisms which
are MQS but not weakly isomorphic.

The examples constructed in Section 3.2 are mixing extensions given by
Gaussian cocycles of a mixing Gaussian automorphism.



CHAPTER 1

Basic concepts in ergodic theory

1.1 General notions

By a probability standard Borel space one means any probability space
(X, B, i) isomorphic to the space ([0,1], B, A), where B’ stands for the o-
algebra of Borel sets and A denotes Lebesgue measure (sometimes, we may
need to complete B).

Equalities between sets, functions, o-algebras etc. are usually understood
modulo null set for the measure p. If T'is a bijection it means an a.e. bijection,
i.e. after removing from X a set X, of a measure zero, T" becomes a genuine
bijection from X \ X, onto itself.

By isomorphism one means an a.e. bijection S : X; — X, which
is bimeasurable and which “preserves” the measure, in the sense that
p1(ST1By) = ps(By) for each By € B,. Note that S™' : (Xy, Bo, pa) —
(X1, Bi, 1) is also an isomorphism.

1.2 Spectral theory

Let H be a separable Hilbert space and U : H — H be a unitary operator
on H and let z € H.
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The sequence 1, (Urz,x),n € Z, is positive definite, i.e. for any

(an)n>0 CCand N >0

N
> Ppemnt, = 0.

n,m=0

It follows from the Herglotz theorem (see e.g. [39]) that any positive
definite sequence is the Fourier transform of the unique, finite, non-negative,
Borel measure o, on S' := {z € C : |z| = 1} [] Therefore, we can write

O.[—n] = /1 2"do, = (U"z,x), n € Z,
S

i.e. 6;[n] denotes the n-th Fourier coefficient of the measure o,. The measure
o, is called the spectral measure of x (we may also write o, ¢y instead of o,
when a confusion can arise).

Definition 1.2.1. For an element x € H, we define the cyclic space Z(x)
generated by x:
Z(z) = span{U"x : n € Z}.

It is the smallest, closed, invariant subspace containing x.

Definition 1.2.2. A decomposition H = @2, Z(x;) is called spectral if
Opy > Ogy > ...

The main theorem in the spectral theory of unitary operators states that
for any unitary operator of a separable Hilbert space a spectral decomposition
exists and is unique in the following sense.

Theorem 1.2.1 (Spectral theorem). If U : H — H is unitary and H =
21 L(xi) = @2, Z(x}) are two spectral decompositions of H then 0., = 04
for every i > 1.

Definition 1.2.3. The typeE| of the measure o0,, is called the mazimal spec-
tral type oy of U.

Let Ay = S! and for n > 2 denote

do,
A, = suppU”. (1.2.1)
do,,

14 Tt is also known that, for each x,y € H, there exists (a unique) complex measure Ozyy
such that ¢, ,[—n] = (U"x,y) for every n € Z. Moreover, 0, , < o, for all z,y.

15By the type of a measure one means the set of equivalent measures to a given one. In
what follows, if no confusion arises we will not distinguish a measure and its type.

16The symbol Z—‘; stands for Radon-Nikodym derivative of u with respect to v, where
p< v
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The sets A,, are defined o,,-a.e. and moreover

dog,,, dog,,, dog,

do, do, do,,
1 n 1

Thus,
S'= A4, D Ay D A3 O ... (modulo oy, ).

Definition 1.2.4. The function My : S* — {1,2,...} U {400} defined by

My(z) = il La,(2)

is called the multiplicity function of U.

Definition 1.2.5. Two unitary operators U; on H;, ¢ = 1,2, are called spec-
trally equivalent if there exists a surjective isometry W : H; — Hy such that
WolU;, =U;0W.

Theorem 1.2.2. Unitary operators U; on H;, i = 1,2, are spectrally equi-
valent if and only of oy, = oy, and My, = My, (oy,-a.e.).

It follows that the maximal type of U and the multiplicity function de-
termine the operator U.

Definition 1.2.6. Depending on the form of My and oy one says that:
e U has simple spectrum, if My =1,
e U has spectrum of uniform multiplicity N, if My = N,

e U has singular spectrum, if oy is singular with respect to Lebesgue
measure,

e U has absolutely continuous (Lebesgue) spectrum, if oy is absolutely
continuous with (equivalent to) Lebesgue measure,

e U has discrete spectrum, if oy is a discrete measure [}

It is well-known that the operator U : Z(x) — Z(x) is spectrally equival-
ent to the operator V, : L*(S',0,) — L*(S', 0,) given by V,, (f)(z) = zf(2).
We will make use of the following well-known lemmas.

"When U = Uy then it is easy to see that oy is discrete if and only if T has discrete
spectrum in the sense of Definition m
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Lemma 1.2.3. Let U; be a unitary operator of a separable Hilbert space H;,
1=1,2. Let V : Hy — Hs be linear and continuous operator intertwining Uy
and Uy. Then oy, y, <K 00,-

Proof. For each n € Z, we have
UV, Vay = (VUlz, V) = (Ul'x, V*Vz).

Therefore, Gy,[n| = G, v«vz[n| for each n € Z (ctf. footnote . Since
0z v+ve K 04, the assertion follows. O

Lemma 1.2.4. Let Uy,U,,V be as above. If ImV = Hy then the set of
eigenvalues of Uy is a subset of the set of eigenvalues of Uy.

Proof. Let H; = H;y ® H;. be the decomposition of H; into two invariant,
closed subspaces, where oy, g, is discrete and oy, g, is continuous, ¢ = 1, 2.
By Lemma , V(Hi4) C Hag, V(Hie) C Hs.. Suppose that Usy = cy
and ¢ in not an eigenvalue of U;. Then y L V(Hy4) and y L Hs., whence
y L V(H;) and therefore y = 0, since VH; = Hs. O

For more information on the subject, see e.g. [11], [19], [26].

1.3 Ergodicity, mixing, rigidity
Definition 1.3.1. One says that 7' € Aut(X, B, p) is:
e ergodic, if for every A € B[
T7'A=A = (u(A) =0 or u(A) = 1);

equivalently,

m + Y u(T*AN B) = p(A)u(B)

li
N—oo el
for all A, B € B,

e totally ergodic, if T* is ergodic for every k > 0,

18We also consider infinite measure-preserving automorphisms, e.g. T, : (X xG,B®
B(G),p®@mg) = (X x G,B® B(G), p ® mg), where m¢ is a Haar measure of an l.c.s.c.
group G which is not compact. In this case, ergodicity means that each invariant set is
either of measure zero or its complement set is of measure zero.
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o weakly mixing, if for all A, B € B

N

.1 ! B
Am o ; [W(T*AN B) = p(A)u(B)| = 0,

e mixing, if for all A, B € B
lim p(T"AN B) = p(A)u(B),

n—oo

e mizing of order k, for all Ay,... A, € B

k

n2,...,Np—00,|n; —nj|—=00,i#£] i—1

Definition 1.3.2. An increasing sequence (¢q,) C N is called a rigidity
sequence for T if T —— Id strongly, i.. WUran f — f|| — 0 for every

f € (X, B, ).
Some dynamical properties of T" € Aut(X, B, 1) have their characteriza-

tions in terms of spectral properties of Ur:

e T is ergodic if and only if 1 is a simple eigenvalue of Ur.

e T is totally ergodic if and only if it is ergodic and in the spectrum of
Ur there is no non-trivial root of unity.

e T is weakly mixing if and only if Ur has continuous spectrum on the
subspace L3(X, B, u) of L*(X, B, i) of zero mean functions.

e T is mixing if and only if oy, on L3(X, B, 1) is a Rajchman measure,
ie. oy.(n) —— 0.

[n]—o0

For more information on the subject, see e.g. [11], [15], [51].

1.4 Induced automorphism and Rokhlin lemma

Let T' € Aut(X,B, ) and A € B a set of positive measure. Then, for u-a.e.
x € A, the first return time

na(x) :=inf{n > 1: Tz € A}
of x to A is well defined (Poincaré’s lemma, e.g. [51]).

The map Ty : A — A given by Ty(x) = T"4@)(z) is called the first
return map or induced automorphism. The induced automorphism is an
automorphism of the space (A, Ba, pa), where By = {B € B: B C A} and
pa(B) = % for each B € Ba. If T is ergodic then T}y is also ergodic.
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Definition 1.4.1. T is called aperiodic if for each n > 1, the set {z € X :
T"x = z} has measure zero.

Definition 1.4.2. The collection A, TA, ... T" A is called a Rokhlin tower
of the height h and the base A if T'"ANT'A=0for0<i<j<h.

Lemma 1.4.1. Let T be an aperiodic measure-preserving transformation of
(X, B, ). Then for arbitrary h € N and € > 0 there exists a Rokhlin tower

of the height n and the base A such that u(UZ;é TkA> >1—e.

Remark 1.4.1. It is well known that if we fix e >, h > 1 and aset A € B
of positive measure then we can find a Rokhlin tower F,...,T"~'F with
W > h, p(UXG TPF) > 1 — € and such that F C A.

Remark 1.4.2. It follows directly from definition that if F,TF,...,T"'F
is a Rokhlin tower and A = T*F' (for some 0 < k < h — 1) then n4(z) > h.

For more information on the subject, see e.g. [11], [15], [51].

1.5 Factors and extensions

Assume that T € Aut(X, B, u), S € Aut(Y,C,v).

Recall that S is said to be a factor of T (and T to be an extension of
S) if there exists a “measure-preserving” map R : X — Y Ir_g] such that
RoT =SoRE

Notice that if S is a factor of T (with R as above) then R71(C) is a
T-invariant sub-c-algebra of B. On the other hand, with every invariant
sub-c-algebra A of B we can associate a factor of T[]

Assuming T is ergodic, it was shown in [3] that every ergodic extension
T of T can be realized as a skew product over T, i.e. the automorphism
T € Aut(X,B, i) is isomorphic with some automorphism T : (X x Y, B ®
C,uv) — (X xY,B®C,u®v) given by

T(x,y) = (Tx,Syy), (1.5.1)

9Recall that it means that v = R.(u), i.e. for every A € C, v(A) = p(R™LA).

201f (X, B, 1) = (Y,C,v) then each measure-preserving R : X — Y is called an endo-
morphism.

21One defines the factor as: Y = X/A (we do not distinguish points which cannot
be separated by the sets from A), the measure structure is given by (A, ul4) and T
operates in a natural way on the resulting quotient space. Sometimes, we will denote
the resulting factor-automorphism by 7’| 4. We should notice however that to say that
factor-automorphisms are defined on probability standard Borel spaces we need a slight
extension of the latter notion in General notions and admit atoms.
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where (S;)sex C Aut(Y,C,v) is a measurable family?} Note that 7" is a
factor of T'.

A special case of skew products are aforementioned Rokhlin extensions,
i.e. automorphisms of the form

T%g(l’? y) - (T$, Sgo(ac)y)v

where G = (S;)4ec is @ measurable representation of an Abelian l.c.s.c. group
G in Aut(Y,C,v) and ¢ : X — G is a measurable function (see for example,
[29]).

1.6 Coalescence and weak isomorphism

Definition 1.6.1. [36] An automorphism 7' € Aut(X, B, ) is called co-
alescent if every endomorphism S : (X,B,pu) — (X,B,u), SoT =T oS,
is invertible. Equivalently, the operator Usf = fo S, f € L*(X,B,u), is
unitary.

It follows from [36] that each automorphism 7" for which oy, ({c0}) =0
is coalescent. In particular, all automorphisms with simple spectrum are
coalescent.

Later, we will make use of the following well-known observation.

Remark 1.6.1. If T is coalescent and T is weakly isomorphic to T3, then T’
and T; are isomorphic. Indeed, Ti, as a factor of T, is represented as a T-
invariant sub-c-algebra By C B (and T} can be identified with the quotient
action of T on (X/By, By, p|s,)). By the same token (reversing the rules
of T and T}) there exists a T-invariant sub-c-algebra By C B; such that
the quotient action, say T'|g,, of T on (X/Ba, Ba, pt|s,) is isomorphic to the
original automorphism 7. Then, each isomorphism, say S, of T" and T'|g, is
in fact an endomorphism of (X, B, u) and since S oT = T o S, it must be
invertible. Therefore By = By = B.

1.7 Joinings and Markov operators

Recall that if T; € Aut(X;, By, p;), @ > 1, then each Ty x Ty X .. .-invariant
probability measure on (X7 X Xy X ..., B;® By®...) with each X;-marginal
equal to p;, is called a joining of T1,T5, . ..

*2Here, the measurability means that the map X xC > (z, A) — S, A € C is measurable.
One considers C (modulo sets of measure zero) as a metric space with the distance given
by the measure of the symmetric difference between sets.



8 1. Basic concepts in ergodic theory

We denote by J(T1,Ts, . ..) the set of all joinings of 177, T3, . . . If we assume
additionally that each T;, ¢ > 1, is ergodic then J(T}, T, ...) is a simplex.
Then the extremal points in J(T},Ts, . ..) are exactly ergodic joinings, i.e. all
joinings A for which (77 x Ty x ..., \) is ergodic. By J¢(T},T5,...) we denote
the set of ergodic joinings. For each joining A € J(T3,Ts,...), its ergodic
decomposition consists of ergodic joinings.

When 77 = T, = ... = T, we speak about self-joinings and we use
notation J,,(T), JS(T) if only finitely many, say n, copies of T are in-
volved or J(T'), JS (T) for the infinite case. Recall that there is one-to-
one correspondence between J(77,75) and the set of all Markov operat-
ors ® : L*( Xy, By, 1) — L*(Xy, Bs, us) satisfying the intertwining relation
®oUr, =Urp,0®.

Here are the simplest examples of 2-self-joinings of an ergodic T €
Aut(X, B, p):

e the product measure p ® u,

e the graph self-joining g corresponding to S € C(T) [P} where pug(A x
B) = u(AN S~'B) for each A, B € B,

e the relative product p ® 4 u corresponding to a factor A C B, where
1 @ap(A X B) = [x;4 E(AJA)(T) - E(BlA)(T) d(1].4)(T).

Note that ug € J5(T') and the product measure p® p € JS(T) if and only
if T is weakly mixing. Moreover, the Markov operators corresponding to the
three types of joinings listed above are I1 1] Us, E(-|.A), respectively.

For more information about joinings we refer to e.g. [15], [45].

1.8 Essential values of a cocycle taking values in Abelian
groups

In this subsection, we recall the definition and general results about essential
values of a cocycle (see [I], [46]).

Let (X,B,u) be a (non-atomic) probability standard Borel space and
T:(X,B,pu) — (X,B,u) an ergodic automorphism. Such an automorphism
is then automatically aperiodic Assume that G is an Abelian l.c.s.c. group
with the o-algebra of its Borel sets B(G) and a fixed Haar measure mg (we

By C(T) we denote the centralizer of T, i.e. the set of all R € Aut(X,B,u), RoT =
ToR.
2The operator I : L?(X, B, u) — L?(X, B, i) is given by formula I1f = Jx fdu.
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will also write dg instead of mg). Denote by G = G U {cc} the one-point
compactification of G (when G is non-compact).
For a measurable function ¢ : X — G, we set (p,)

n—1

onla) = X olT*a) n 2 1,

and we extend the formula to all n € Z so that, for n,k € Z, pp(x) =
@n(z) + pi(T"z). In this way we obtain a cocycle | for the Z-action given
by n+— T" n € Z. For simplicity, the function ¢ itself will be often called a
cocycle. We recall that

Definition 1.8.1. A cocycle ¢ : X — G is called ergodic if the automorph-
ism T, : (z,9) = (Tx, g+ ¢(z)) is ergodic on X x G for the measure u® dg.

1.8.1 Recurrence of a cocycle with values in R?

Let ||- || be anorm on R? The inequality |[[¢n1(x)] = [len(T2)|l| < [lo(@)]
implies the T-invariance of the set {z € X : lim, ||pn(2)|| = +o0}. There-
fore, by ergodicity, this set has measure 0 or 1, and we have the following
alternative: either for p-a.e. every x € X, lim, ||¢,(x)| = +o00 or for p-a.e.
r € X, liminf, ||p,(2)] < +oc.

Definition 1.8.2. A cocycle (p,) over (X,u,T) with values in G = R?
is called recurrent if liminf, ||@,(z)] < 400, for a.e. = € X. It is called
transient if lim,, ||@,(z)]| = 400 for a.e. z € X.

Let us recall some notions and facts from the theory of dynamical systems
preserving an infinite measure.

Definition 1.8.3. Let 7' € Aut(X, B, ) and u be a o-finite measure. A set
A is said to be wandering if the images (T~ "A),cz are pairwise disjoint. The
automorphism 7" is called conservative if there is no wandering measurable
set of positive measure.

Lemma 1.8.1. 1. For every A € B, the set B := {x € A: T"z ¢
A,Vn > 1} is a wandering set.

25 That is,

0, n=>0
—(p(T"x) + ...+ (T tz)), n < 0.

o)+ o(Tz)+...+ (T x), n>0
on(z) =
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2. If F is a set with finite measure and B € B a wandering set then for
a.e. x € B the number of visits to F' is finite.

Proof. 1. Supposey € T"™BNT ™ B, with ng > ny, then T"'y € B C A
and T~ ™(T™y) € B C A which contradicts the definition of B.

2. The observation is based on the Borel-Cantelli typﬂ argument. The
images of B are pairwise disjoint and therefore we have

SuBNT"F)=> pu(IT"BNF) < u(F) < +oo.

n=0 n=0

It follows that for almost every z € B, Y.,5¢1p(T"2) < +00.
O

Remark 1.8.1. 1. By 1) of Lemma [1.8.1] conservativity is equivalent to
“for every measurable set A, a.e. x € A returns to A”.

2. If u(X) < +o0, there is no wandering set of positive measure, hence
every dynamical system with finite measure is conservative.

3. In a conservative dynamical system, since a.e. € A returns to A at
least once, it must return to A infinitely often.

4. If T is conservative then the induced automorphism 74 is conservative
for every A of positive measure.

Returning to the theory of cocycles, we obtain the following classical
result.

Lemma 1.8.2. A cocycle () is recurrent if and only if T,, is conservative
with respect to A = 1 @ mg.

Proof. For M > 0, let Uyy = {z € R : ||2z]| < M} and Ay := X x Uy,

“«<” Suppose that T, is conservative. Then a.e. point (z, z) € Aj; returns
infinitely many times to A;. Therefore for a.e. x € X, liminf,, ||¢,(z)]| < occ.

“=" Suppose (¢,) is recurrent. Let A C X x R? be a set of positive
measure. We need to show that points of A are returning to A. We can
assume that A is bounded, i.e. for some M > 0, A C Ay. Let B be the
set of points of A that never return to A. Then B is wandering (see Lemma
1.8.1). Fix € > 0. By recurrence, there exists L > 0 such that the set
R := {z € X : liminf, ||p,(z)|| < L} has measure p greater than 1 —e. It
follows that a.e. (z,2) € BN (R x Uy):

26Borel-Cantelli Lemma : Let (X, B, 1) be a probability space and (C},),>0 be a sequence
of sets from B. If Y | 1u(C),) < oo then for almost all z € X the set {n;x € C,} is finite.
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e returns to X X Upyp infinitely often (indeed, x € R,||z|] < M
and ||¢n,(z)|| < L for some n; < ny < ...; moreover, T (v, z) =
(T, pn,(x) + 2) and [|@n, () + 2] < |lon, (2)[| + []2] < L+ M).

e returns to X x Uy, only finitely many times if we apply Lemma [1.8.1
(fOI' F= AM+L);

which yields a contradiction. It follows that B C R x Uy (since B C
X xUyr). Hence p®@dg(B) < Me and since € > 0 is arbitrary, p®dg(B) = 0,
and the proof is complete. O

Let us consider T' € Aut(X, B, ), where u is a finite measure. Let ¢ :
X — G be a cocycle. We induce ¢ on a set of positive measure A by putting

na(xz)—1

P (@) = o) (7) = ;) p(Tz).

Hence, the “induced” cocycle for the induced automorphism 74 on A is given
by
i (@) == o (2) + ¢ (Taz) + ... + N (Th ), forn > 1.

Remark 1.8.2. If (¢,) is recurrent, then the induced cocycle () is recur-
rent. Indeed, (T4),, is the induced automorphism on A x G of T,, which is,
following the previous lemma, conservative if (i, ) is recurrent. Clearly, the
conservativity of T, implies the conservativity of (74),4, hence the recurrence
of the cocycle (p2) over Ty.

The following lemma provides another equivalent condition for recurrence.

Lemma 1.8.3. A cocycle (¢,) is recurrent if and only if for each neighbor-
hood U 5 0 and A C X of positive measure there exists n € Z \ {0} such
that

w(ANTAN ¢, € U]) > 0. (1.8.1)

Proof. Following Remark [1.8.2] if (¢,) is recurrent, then the cocycle (¢7) is
recurrent and therefore for every neighborhood U of 0, there is, for a.e. z,
an infinite sequence (nx) = (ng(z)) such that 7™z € A and ¢,, () € U,
Vk>1. Let Aj:={x € A: T'x € A and ¢;(x) € U}. Up to a set of measure
zero, we have A = U;>1A;. Therefore, there is Iy > 1 such that p(A4;) > 0,
which shows the property .

Conversely, suppose that the cocycle is transient. Then there exists n; >
1 such that if we set YV := {z € X : ||jg,(z)|| > 1 for each n > ny} then
pu(Y) > 1/2. Because of the aperiodicity of T, there is C' C X such that the
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sets T*C for k = 0,...,n;—1 are disjoint and p(U§* ' T*C) > 1/2. It follows
that there exists k € {0,1,...,n; — 1} such that u(Y NT*C) > 0. Let B :=
T*C'. The first return time np(z) to B of a point o € B satisfies ng(x) > n;.
It follows that for every n > ny, we have u(BNT"B N |[p, € U]) = 0 for
U={z€R?:|z|]| < 1}. Hence, the property with U defined above
is not satisfied by B since u(BNT"B)=0forn=0,...,n; — 1. O

Remark 1.8.3. In order to give a simple example of a non-trivial recurrent
cocycle consider a cocycle ¢ : X — G such that ¢y, — 0 in measure, where
(I,) is a rigidity sequence for T. Then ¢ is recurrent; indeed, in (L.8.1)),
T~!n A is almost equal to A while [¢;, € U] is almost the whole space X.

Remark 1.8.4. For each d > 1, the cocycle generated by a (measurable)
function ¢ : T — R? over any irrational rotation, say by «, is recurrent if
the components of ¢ have bounded variation and integral 0. Indeed, by the
Denjoy-Koksma inequality , since (¢,,) is a bounded sequence in R?
((gn) stands for the sequence of denominators of «, see Section 1.8.1), the
condition liminf,, ||¢,(z)|| < oo holds for every x € T.

1.8.2 Regular cocycles

Definition 1.8.4. A cocycle ¢ : X — G is called a coboundaryif o = f—foT
for a measurable map f : X — G. Two cocycles p,v : X — G are called
cohomologous if ¢ — 1) is a coboundary.

An obvious obstruction to the ergodicity of a cocycle ¢ is that ¢ is co-
homologous to a cocycle ¢ taking its values in a proper closed subgroup of
G. This suggests the following definition:

Definition 1.8.5. A cocycle ¢ : X — G is called regular if it is cohomo-
logous to a cocycle v taking values in a closed subgroup H of G such that
Ty : (x,h) = (Tx,h +(z)) is ergodic on X x H for the measure yu ® dh,
where dh is a (fixed) it Haar measure on H.

So, a regular cocycle is “almost” ergodic (up to reduction by cohomology
to a smaller closed subgroup).

One of the main tools for studying the ergodicity and the regularity of a
cocycle is the following notion.

Definition 1.8.6. An element g € G is called an essential value for a cocycle
o, if for each open neighborhood U > g in G, for each A € B of positive
measure, there exists N € Z such that p(ANTNAN [py € U]) > 0. We
denote the set of essential values by £(¢) and we set E(p) := E(p) N G.
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Note that if 0 # g € £(p) then we have u(ANTNAN[py € U]) > 0 for
infinitely many values of N € Z. Indeed, because T is ergodic and aperiodic,
for each N € Z \ {0} we can find a subset C C A, u(C) > 0 such that
TNC N C =0 (see Remark [1.4.2).

Lemma 1.8.4. Cocycles with non-trivial essential values are recurrent.

Proof. Assume that g € () \ {0}. We show the property (1.8.1]). Take U a
neighborhood of 0 € G. Then find N € Z so that there is B C X, u(B) > 0
such that

BCA TNBC Aand pn(B) Cg+U.

Apply once more the definition of the essential value, this time to the set
TVB to find C C X, u(C) > 0 and an integer M # N such that

CCTVNB, TMC Cc TNB and oy (C) C g+ U.

Now, for x € C C A we have TM Ny = T-N(TMz) e T-N(TNB) = B C
A. Moreover,

er-n (@) = om() + o-n(TY2) = pu() — (T N2) e U - U
since TM—Ng € B. ]

It turns out that £(y) is a closed subgroup of G. Besides, two cohomo-
logous cocycles have the same group of essential values.

Let o,(z,h) := (x,9 + h), g € G, be the action of G on X x G by
translations on the second coordinate. Clearly, it commutes with 7,,. Then
(see [46], Theorem 5.2) E(y) is the stabilizer of the Mackey action of o, that

1S

E(p)={9eG:Foo,=F,

o (1.8.2)
V measurable, T, -invariant F' : X x G — C}.

In other words, £(p) is the group of periods of the measurable, T-
invariant functions. Therefore, ¢ is ergodic if and only if E(p) = G. If
@ is regular, then the group H in the definition of regularity is necessarily
E(p). Coboundaries are precisely regular cocycles ¢ with £(¢) = {0}.

1.9 Examples of dynamical systems

1.9.1 Irrational rotations and continued fraction expansions

Let T = [0, 1) denote the additive circle. Assume that a € [0, 1) is irrational.
Set Tx = x +a mod 1 for x € T. Moreover, T' € Aut(T, B(T), mr). Then T
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is ergodic and since Ur(r,,) = e*™r, 1, (z) = ™™ (n € Z), T has discrete
spectrum (see Definition below).

Let us recall some basic facts about continued fractions (e.g. [20]). Let
[0; ay, ..., Gn, ...| be the continued fraction expansion of o € (0, 1), i.e.
1
o =
1
ai + 1
as +
as + -

and let (pn/¢n)n>—1 be the sequence of its convergents. The integers p,, (resp.
¢n) are the numerators (resp. denominators) of . We have p_; =1, pg = 0,
qg-1=0,q =1, and for n > 1:

Pn = QpPn—-1 +pn—27 dn = QpQn—1 + dn—2; (_1)71 = Pn—14n — Pndn-1- (191)

As usual, the fractional part of u € R is demoted by {u} = u — [u],

where [u] is the integral part of u. For u € R, set ||u|| = inf,ez|u —n| =
min({u},1 — {u}). Then for any integer M we have ||Mu| < |M]|||ul|. Note

that || - || yields a translation invariant distance on T.
We have for n > 0, ||g,«|| = (—1)"6,, with 6,, = ¢,a — p,,, and moreover
I = qNan-i—lO‘H + Qn-i-l”(hanv (1‘9'2>

1 1 1

In+1 1 Gn In+1 Ont1Gn + Gn—1

lgna|l < ko, for 1 < || < ¢ni1. (1.9.4)

Definition 1.9.1. An irrational « is said to be of bounded type if the sequence
(a,) is bounded.

1.9.2 Dynamical systems with discrete and quasi-discrete spec-
trum

Assume that T' € Aut(X, B, u). Denote by Ey(T') the group all eigenvalues
of Ur and for each integer k > 0 set

B (T)={fecL*(X,B,p): |f|=1,foT-fec E._1(T)}.

Remark 1.9.1. Observe that when T is ergodic, the set {\f : A € C and f €
Ey(T)} is the set of eigenfunctions for Uy.

Definition 1.9.2. T is said to have a discrete spectrum if E1(T) is linearly
dense in L*(X, B, j1).
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Definition 1.9.3. T is said to have quasi-discrete spectrum if T is totally
ergodic and the subspace generated by UpenFy(T) equals L2(X, B, ).

Clearly, each irrational rotation Tx = z + a has quasi-discrete spec-
trum. The simplest example of an automorphism with quasi-discrete but
not discrete spectrum is given by the group extension T, of 7" by an af-
fine cocycle p(x) = mx +c (p: T — T, m € Z\ {0}, ¢ € T). That is,
T,:T? = T2 T,(x,y) = (x + a,mz + y + ¢). Indeed, for gx(z,y) = >
we have g, o T,,(z,y) = e*™*r, (x)qi(z,y), so qx € Ea(T)).

Remark 1.9.2. Assume that 7" has quasi-discrete spectrum and let p €
JE(T). Then Uiy Ex(T x T x ..., p) is linearly dense in L*(X x X x ..., p).
Indeed, by induction on k we show that whenever fi,..., f, € Ex(T) and we
let F(zy,20,...) == filxy) - folxs) ...  fo(x,), then Fo(T'xT x ...)-F €
Er a(T'xTx....p),s0 FeE,(TxTx...,p).

It looks as if ergodic self-joinings of an automorphism with quasi-discrete
spectrum yield automorphisms with quasi-discrete spectrum. However, this
is not the case because an ergodic self-joining need not be totally ergodic.E]
We will bypass such a difficulty in Chapter [3]

We define G, (T) = {f : X — S': f e L*X,B,u), R"f = 1} for
n=0,1,2,..., where Rf = foT/f (R’ = Id).

Lemma 1.9.1. Let T be ergodic, then G,(T) = E,,—1(T) forn > 2.

Proof. Induction on n. Let n = 2 and assume that f € L*(X,B,u), |f| =1
and R2f = 1. It follows that £ ‘}T ol =1 ‘}T, that is £ ;T is T-invariant, whence
by the ergodicity of T, it is constant. Thus G5(T) C Ei(T). Obviously,
E(T) C Gy(T).

Assume now that G,,(T) = E,_1(T) and take f € G,1(T). It follows
that R"*(f) = R"(Rf) = 1 and therefore Rf € G,(T) = E,_1(T). By the
definitions of E,_1(T") and R it follows that foT =g f with g € E,_1(T)
which implies f € E,(T).

Conversely, if f € E,(T) then foT =g f for g € E, 1(T) = Go(T)
(the latter equality follows by the induction assumption). It follows that
R f = R*(Rf) = R"(g) = 1 and therefore f € G,,.1(T). O

?"Indeed, if T(z,y) = (x + a,x + y) then the automorphism (z,, 2) LN (z + a,y +
z,z+x41/2) is a self-joining of T. Moreover, F(z,y,z) = 2™ (*~¥) satisfies FoW = —F.
However, W is not ergodic (see Subsection and consider the character (y,z) —
2y — 2z). On the other hand, for a.e. ergodic component of W, F restricted to it satisfies
the equation above. Moreover, for some of these ergodic components F' # 0. An ergodic
component of W is still an ergodic self-joining of T' (cf. Subsection .
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Lemma 1.9.2. Let T be ergodic and S an endomorphism of (X, B, u) such
that SoT =T o S. Then Us(G,(T)) C G,(T).

Proof. Induction on n. Clearly, the assertion is true for n = 0,1 as Gy = {1}
and G; = {c: ¢ € S'}. In view of Lemma , we only need to show
(inductively) that Us(Ex(T)) C Ex(T) for k > 1. Assume that f € Ey(T).
Then foT =g- f with g € Ex_1(T). We have

(foS)oT =(foT)oS=(g-f)oS=goS-fob.

By the inductive assumption, g o S € Fy_1(T) and therefore f oS € E(T).
]

Lemma 1.9.3. If g € G,+1(T) and S an endomorphism such that S oT =
ToS then goS/g e G,(T).

Proof. For n = 0 the assertion is true as the ergodicity of 1" implies that g is
constant whenever g € G1(T). Thus goS/g =1 € Go(T'). Suppose now that
goS/g € Gn(T) whenever g € G, 11 (T) forn =1,2,...,m. Let g € Gp,12(T).
Then goT = h- g with h € G,,,;1(T). Thus, goSoT =hoS-goS and
goSoT/goT = (hoS/h)(goS/g), where, by assumption, ho S/h € G,,(T).
By the definition of G,,41(7T), we have go S/g € G, i1 (T). O

We will make use of the following theorem.

Theorem 1.9.4. ([17]) If T has quasi-discrete spectrum, then T is coales-
cent.

Proof. Assume that S is an endomorphism of (X, B, ;1) which commutes with
T. We need to show that Ug is unitary. By Lemma [1.9.2] it suffices to
show that Us maps G,,(T') onto itself for n = 0,1,... Clearly, it is true for
n = 0. Suppose now that Us maps G,(T) onto G,,(T"). We have to show
that Us maps Gn41(T) onto G,i1(T). By Lemma [1.9.3] if ¢ € Gny1(T),
then g o S/g = h € G,(T). By the induction assumption, there exists
h' € G,(T) for which Ush/ = I/ oS = h. If we now set ¢’ := g/h then we
have Usg =g 0o S=goS/h oS =goS/h=yg.

[

We also recall the following classical result by Hahn and Parry ([17]):

Theorem 1.9.5. If T has quasi-discrete spectrum, S is a factor of it, then
S has quasi-discrete spectrum.

For a full classification of automorphisms with quasi-discrete spectrum
see [2] P

28Each automorphism T with quasi-discrete spectrum can be represented as Tx = Azx+b
where X is an Abelian compact connected and metrizable group, A is (continuous, group)
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1.9.3 Gaussian dynamical systems

We will recall now necessary facts from [24] and [25] needed for the sequel.

Assume that o is a finite, continuous, symmetric, Borel measure on S =
{2z € C: |z| = 1}. Then, on the space X, = R% endowed with the natural
Borel structure there exists a probability measure p, (called a Gaussian
measure) such that the process (P,),cz defined by

P,:X,—R, P(w)=w, for nezZ,

is a real stationary centered Gaussian process whose spectral measure is o,
ie.

a[—n] = /S1 2"do(z) = /X P,Pydu, forall neZ.

If we denote by T, the shift transformation| on X, then the automorphism
Ty (Xo, 1) = (Xo, 1) is a (standard) Gaussian automorphism ] with the
real Gaussian space

H, =span{P, = PyoT": n€ Z} C L*(X,, it5).

The space H, corresponds to the subspace .4, of L*(S!, o) consisting of
functions ¢ satisfying ¢(Z) = g(z) (o-a.e). In this representation, the action
of Ur, on s, is given by V' (g)(z) = zg(z), while the variable Py corresponds
to the constant function 1 = 1. If g € 5 C L*(S',0) is of modulus 1
(a.e.), then it determines a unitary operator W on L*(S!, o) acting by the
formula W(f)(z) = g(2)f(2). Moreover, W oV =V o W. Then, there is a
unique extension of W to a unitary (Koopman) operator Us on L*(X,, i1,),
where S : (X,, o) — (X, fty) and S belongs to the Gaussian centralizer
C9(T,) of T, i.e. to the set of all elements of the centralizer C(T,) which
preserve the Gaussian space H, (note that C9(T,) is Abelian). Because of
the continuity of o, T}, is ergodic, in fact, weakly mixing. We also recall that

if T, is mixing (equivalently, o is a Rajchman measure, i.e. 7[n] ﬁ———> 0)
n|—oo

then it is mixing of all orders (Leonov’s theorem, for a simple proof see e.g.
[24]).

automorphism of X and b € A. Moreover, it has zero entropy. Note that T}, : T? — T2,
Ty(z,y) = (x + a,mx+y+ c) is of the above form with A given by the matrix [ 711 0 }

0
and b = («, ¢).

BT, ((wn)nez) = (Vn)nez, where v, = w11, n € Z.

30 Assume that T' € Aut(X, B, ). T is said to be a Gaussian automorphism if: (i) there
exists a real Up-invariant closed subspace H C L*(X, B, u) such that each 0 # h € H is
a Gaussian variable, (ii) the smallest o-algebra B(H) C B with the respect to which all
h € H are measurable is equal to B. H is then called the Gaussian space of T'.
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Following [25], T, is called GAG (or o is a GAG measure) if for each
p € J5(T,) we have all non-zero variables (w,w’) = Q(w) + Q'(w') Gaussian
whenever ), Q' € H,, i.e. the automorphism (7, x T,, p) is Gaussian (with
the Gaussian space equal to H, + H,). All Gaussian automorphisms with
simple spectrum are GAG and C(T,) = C9(T,) (see [25]) .

Each variable @ € H, (Q : X, — R) can be treated as a real-valued
cocycle (for T,). It is called a (real) Gaussian cocycle. A Gaussian cocycle
Q is called a Gaussian coboundary if it is a coboundary () = J — J o T, with
J e H,.

Remark 1.9.3. Note that it means that if f € JZ, corresponds to (), then
f(z) = &(2) = V(€)(2) = £(2)(1 — 2) for some € € L*(S',0); equivalently
f(2)/(1 —z) € L*(S', o). In this case f is called an L*(S!, o)-coboundary.

The following result has been proved in [24].

Proposition 1.9.6 ([24]). Assume that Q € H,. Then the following condi-
tions are equivalent:

(i) Q: Xy — R is a coboundary;
(i) Q: X, — R is a Gaussian coboundary;
(iii) e*™Q : X, — S is a coboundary;
(iv) there exists |c| = 1 such that e*™@ = c-£/€ o T for some measurable
£:X, — St
1.9.4 Abelian compact group extensions of GAG automorphisms

Assume that T'= T, is a GAG. It then acts on the space (X, By, i,). Let
G be a compact (metric) Abelian group and let ¢ : X, — G be a cocycle.
We recall that ([41], Theorem 4.8):

@ is ergodic if and only if for no 1 # y € G there is a measurable solution
¢ : X, — S! to the functional equation

xop=_(oT/C (1.9.5)

Moreover, when T, is ergodic then ¢ € St is an eigenvalue of T, if and only
if there are x € G and ¢ : X, — S! measurable

xop=c-(oT/C. (1.9.6)

Corollary 1.9.7. If T' is a GAG and Q) : X, — R is a Gaussian cocycle
then T.2xiq is ergodic if and only if it is weakly mixing.
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Proof. The result follows directly from (1.9.6) and Proposition [1.9.6] (see

(iv)).
O

Assume that ¢ : X — G is an ergodic cocycle. Then it follows from
[25], [36] that T' = T, is a canonical factor of T, that is, if A C B, ® B(G)
is a factor of T, such that T,|4 is isomorphic to T then A = B, ® {0, G}.
It follows that if W is an endomorphism commuting with 7, then it has to
preserve B, @ {0, G} and moreover, by [36],

W =Wy, Wiv(w,g9)=(Ww, f(w)+ V(). (1.9.7)

where W € C9(T), f : X, — G is measurable, and V : G — G is a
continuous epimorphism. Notice that

Wiy oT, =T,0Wyy

implies

Vo) = p(Ww) = f(w) — f(Tw). (1.9.8)

Remark 1.9.4. Recall also that Rudolph in [44] proved that if S €
Aut(Y,C,v) is mixing, ¥ : Y — G (G is compact (metric) Abelian group) is
a cocycle such that Sy is weakly mixing, then Sy is mixing. In particular, if
T is a mixing GAG and @ is a Gaussian cocycle which is not a coboundary
then T.2riq is mixing. The above result also hold for k-fold mixing.






CHAPTER 2

Strong regularity of affine cocycles

2.1 More about cocycles
2.1.1 Essential values of cocycles taking values in Abelian groups

The following lemmas show how essential values and regularity behave when
a group homomorphism is applied to a cocycle.

Lemma 2.1.1. Assume that ¢ : X — G is a cocycle and let M : G — H be
a (continuous) group homomorphism. Then ME(p) C E(My). If M is an
isomorphism, then ME(p) = E(Mp).

Proof. Let p € E(p). We want to show that Mp is a period of the measurable
Thrp-invariant functions on X x H. Let F': X x H — C be such a function.
Moreover, by a standard argument, we can modify F' on a set of zero measure
in order to obtain a function (still denoted by F') which is Tj,-invariant
everywhere.

Let us fix h € H and denote Fj, : X x G — C by setting Fj(z,y) =
F(x,h+ My). We have

(FroTy)(z,y) = Fp(Tx,y+ p(x)) = F(Tx,h+ My + Mo(z))
= F(x,h+ My) = Fy(z,y).

In view of (1.8.2), p € E(p) is a period for Fy, i.e., Fy(x,y + p) = Fp(x,y)
for a.e. (x,y). This implies that, for every h € H and for a.e. (z,v),

21
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F(z,h+ My + Mp) = F(x,h + My). By Fubini, this implies that there is
y € G such that for a.e. (z,h), F(x,h+ My+ Mp) = F(x,h + My).

By invariance of the Haar measure, this implies F'(z, h+ Mp) = F(x, h),
for a.e. (x,y) and Mp is a period of F.

For the second part of the assertion, apply the above to My and M~t. O

We have the following lemma (cf. Lemma 2.9 in []):

Lemma 2.1.2. If ¢ is a cocycle on (X, p, T) with values in an Abelian l.c.s.c.
group G and H a closed subgroup of G, then the subgroup E(¢)/H of G/H

s such that
E(p)/H C E(p+ H). (2.1.1)

If H C E(p), then we have
E(p)/H=E(p+ H). (2.1.2)
Moreover, ¢* := o+ H : X — G/H is reqular if and only if ¢ is reqular.

Proof. Whenever H C G is a closed subgroup, follows from
Lemma applied to the homomorphism g € G — g+ H € G/H.

Now suppose that H C E(p). In view of it remains to show that
E(p+ H) C E(p)/H. Take g0 + H € E(p + H). All we need to show is
that there exists hy € H such that gy + ho € E(p), which, by H C E(yp), is
equivalent to showing that gy € E(ip).

Take F' : X x G — C which is measurable and T-invariant. Since
H C E(p), F ooy =F for each h € H because of . We can defined F
on X x G/H such that F(z,g+ H) = F(x,g). Since go + H € E(p + H),
again using , we obtain that F o Ogo+H = F, which by H-invariance of
F means F oo, = F and therefore gy € £(p)

Assume now that ¢* is regular. So there are a measurable n* : X — G/H
and a closed subgroup J* C G/H such that

(@) = () + " (2) =0 (Tw) € J* C G/H

and Ty is ergodic on X x J*, ie. E(¢*) = J*. Let m : G — G/H be the
canonical homomorphism and s : G/H — G a measurable selector, that is,
s(g+ H) € g+ H for each g+ H € G/H. Then J := 7~ 1(J*) is a closed
subgroup of G. Denote 1 := s on* and set

¢'(x) = p(x) +n(x) —n(T).
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Then ¢'(x) + H = ¢*(z) +n*(z) —n*(Tx) = ¢¥*(z) € J*, whence ¢' : X — J.
By (3.2.10), since E(¢’) = E(p), we have

E(W)/H =E(p)/H=E(p+ H)=E(") =T,

so E(¢') = J and ¢ is regular.
Conversely, if ¢ is regular then ¢ = n —noT + ¢, where n : X — G
is measurable and ¢ : X — &(p). Then ¢* is cohomologous to ¥ + H

which takes values in £(¢)/H = E(p)/H = E(¢ + H) by (3.2.10), so ¢* is
regular. [

A particular case is when H = £(p). For ¢* = ¢+ E(p), we get: E(p*) =
{0} and ¢ is regular if and only if ¢* is regular (hence a coboundary).

It can be shown that a cocycle ¢ is a coboundary if and only if £(¢) = {0}.
This includes in particular the fact that, if ¢ has its values in a compact group
and has no non trivial essential values, it is a coboundary.

Hence regularity is equivalent to E(¢*) = {0}. In particular cocycles wi
values in compact groups, or more generally such that E(yp) has a compact
quotient in G, are reqular.

Lemma 2.1.3. Assume that ¢ : X — G is a cocycle and let M : G — H
be a (continuous) group homomorphism. If ¢ : X — G is reqular, so is
Mp: X — H.

Proof. If ¢ is regular, there is a cocycle ¥ : X — J with values in a closed
subgroup J C G and a measurable function f : X — G such that

p=f—foT+7vy

and Ty : (x,7) = (Tz,j + ¢(x)) is ergodic on X x J. Thus My = M f —
(Mf)o T + My.

We have £(¢) = J by ergodicity of T}, on X x J and MJ = ME(yY) C
E(Mr) by Lemma . Since M : X — MJ C MJ, it implies (M) C
MJ. But £(Mv) includes MJ and is closed, so it is equal to MJ.

Hence Ty is ergodic on X x M.J, which implies the regularity of My. O

The lemma gives a variant of the proof of the second part of Lemma 2.1.2]
It shows that if ¢ has a non regular quotient then it is non regular.

Remark 2.1.1. Assume that ¢ : X — G; x G5 is a cocycle of the form
Y = (0,12) with ¢3 : X — Go. Then E(¢p) = {0} x E(¢p2). Indeed, Yy (z) is
close to (g1, g2) if and only if g; is close to zero and (¢;) x(x) is close to g, so
this equality follows directly from the definition of essential value. Moreover,
clearly v is a regular cocycle if 15 is regular and the converse follows from

Lemma 2.1.3
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Finally we recall some effective tools which can be used to find essential
values of a cocycle. Given T : (X,B,pu) — (X,B,u) and ¢ : X — G, we
denote the image of p on G via ¢ by p,u. We will make use of the following
essential value criterion.

Proposition 2.1.4 ([30]). Assume that T is ergodic and let ¢ : X — G be
a cocycle with values in an Abelian l.c.s.c. group G. Let (¢,) be a rigidity
sequence for T. If (@u,)«pt — v weakly on G, then supp(v) C E(p).

Let us recall that all Abelian l.c.s.c. groups are metrizable. Let d be a
metric.

Definition 2.1.1. We say that g € G is a quasi-period of a cocycle ¢ over
T with values in G, if there exist 6 > 0, a rigidity sequence (¢,) for T', and a
sequence 0 < g, — 0, such that

pu(A,) >0,¥n > 1, where A, = {x € X : d(¢y, (z),9) < en}
Lemma 2.1.5. The set of quasi-periods is included in E(yp).

Proof. With no loss of generality we can assume that (g, ).t — v where
v is a probability measure on G. In view of Proposition it suffices
to show that a quasi-period ¢ is in the topological support of v. Take U
a neighborhood of ¢, and select a smaller neighborhood g € V C U so
that V' C U. We have v(U) > limsup(py, )«(1)(V) = limsup u(p, (V) >
lim sup pu(A,) > 4. O

The following “lifting essential values” lemma can be applied when T is
an irrational rotation by «, ¢ below is R-valued, centered and of bounded
variation (see (2.2.1))), dealing with different subsequences of the sequence
(gn) of denominators of .

Lemma 2.1.6. Assume that T is ergodic and let (¢,) be a rigidity sequence
of T. Assume that p : X — H is a cocycle such that there exists a compact
neighborhood C' C H of 0 € H for which ¢, € C eventually. Let ¢ : X — G
be a cocycle such that (1, )«(p) — K with x a probability measure on G.
Assume that

0 # go € supp(k) N G. (2.1.3)

Then there ezists hg € H such that (hg, go) € E(P), where ® := (p, 1) : X —
HxG.
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Proof. Note first that in view of Proposition [2.1.4] go € £(¢)). By passing to
a subsequence if necessary, we can assume that the distributions of ¢y, and
®,, converge, that is

(@) (1) = v, (Dg,)u(p) = p,

where v is a probability measure on H. In fact v is concentrated on C (by
our standing assumption). Hence p is a probability measure concentrated on
C x G. Moreover,

the projections of p on C and G are equal to v and & respectively. (2.1.4)

Using , for each n > 1 select an open neighborhood G D V,, 3 gy
so that V,, is compact, diamV,, < 1/n, x(V,) > 0 and V,,;; C V,,. In view
of (2.1.4), p(C x V,,) > 0. Since C' x V,, is compact, there is (c,,g,) €
C x V,, such that (c,, g,) € supp(p) (if no such a point exists, each point of
C x V,, has a neighborhood which is of measure p zero, a finite union of such
neighborhoods must then cover the set C' x V,,, a contradiction).

In this way we obtain a sequence (c,, g,), n > 1, of points which are in
supp(p) N C' x V7 and from which we can choose a converging subsequence
(Cny.> Gny.)- Moreover, by our assumption on the diameters of V,,, (¢y, , gn,) —
(¢, go), so the result follows. O

In particular, by the proof of Lemma Lemma will apply when
go € G is an essential value of ¥ obtained as a quasi-period along a sub-
sequence of the sequence (g,) of denominators of «.

2.1.2 Essential values of cocycles taking values in R?

In the lemmas of this subsection, ® will stand for a cocycle with values in
R,

Lemma 2.1.7. Let 0 = (01, ...,04) € R? be a non zero essential value of ®.
Then there is a change of basis in R given by a matriz M such that the
vector (1,0, ...,0) is an essential value of the cocycle M®. If 6 is rational,
then M can be taken rational.

Proof. There is a change of basis in R? with @ as the first vector of the new
basis. This can be done via a matrix M; with rational coefficients if § € Z<.
The cocycle @ = M;® has an essential value of the form (6,0, ...,0), where
0, is a positive real (a positive integer if 6 is in Z<, for an adapted choice of
Mj). By applying a linear isomorphism M, (rational in the 6 rational case)
we get that ®” = My M;® has an essential value of the form (1,0,...,0). O
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Lemma 2.1.8. There exist a linear isomorphism M : R? — R? and integers
do, dy,ds > 0 such that if we set H; = R%, i =0,1,2, then

RY = Hy x Hy x Hy, M® = (g, 1,1)

with ¢; + X — H;, i = 0,1,2, and E(M®) = {0} x Hy x 'y, with 'y a
discrete subgroup of Hy such that Ho/T'y is compact. If @ is a coboundary,
then d1 = d2 =0.

Proof. The group &(®) is a closed subgroup of R% hence there are linearly
independent vectors vy, ..., vq,, Wi, ..., wq, in R? such that

E(@) ={s1v1 + ...+ Sqva, + w1 + ... +ta,we, : s; ER, t, € Z}.

Select y1, ..., y4, € R? so that together with previously chosen v; and wy, we
obtain a basis of RY. Then define a linear isomorphism M of R¢ by setting

M(y;) = ei, M(vj) = eayrj, M(wr) = €dyrdy+;

where e, ..., e4 is the standard basis of R%. Since E(M®) = ME(P), we
obtain E(M®) = {0} x H; x I'y as required and M® = (g, 11, 19). O

Corollary 2.1.9. Let us consider the case d = 2. Let ® = (¢!, 9?) : X — R?
be a cocycle such that E(P) # {0}. Then

® is reqular if and only if ap' + bp? : X — R is reqular for each a,b € R.
(2.1.5)

Proof. In view of Lemma [2.1.3]| we only need to prove sufficiency. Suppose
® is not regular. In view of Lemma we obtain a linear isomorphism
M : R? — R? such that M® = (¢°,¢7) with ¢° : X — Ho, &' : X — H,,
i equals either 1 or 2 and Hy # {0} by non-regularity of & and H; # {0}
since £(®) # {0} by hypothesis. Hence £(¢°) = {0} and there are a and b
such that ¥° = ap® + bp?. But ap' + bp? is, by assumption, regular, so ¢°
must be a coboundary. Hence (¢/°, ) is cohomologous to (0,%") and it now

follows from Remark that (%, 4") is regular, a contradiction. O

Lemma 2.1.10. Let ® : X — R? be a recurrent cocycle and let M : R — R4
be a linear isomorphism of R yielding the assertions of the previous lemma.
Assume additionally that the quotient cocycle ®/E(P) is constant. Then 1y =
0. Moreover, ® is regular.
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Proof. Since E(M®) = ME(P) = {0} x Hy x I'y, we have

(to(), 1 (), e(2))/{0} x Hy x Ty = const.

It follows that there is a constant b € R% such that 1)y = b. However, M®
is recurrent as ® is recurrent and therefore 1)y is also recurrent. It follows
that b = 0. Now regularity follows from Remark since H; x I'y has a
compact quotient in Hy x Hs. O

An example of a situation described by the previous lemma is the fol-
lowing: let ¥ be an ergodic step cocycle with values in Z over an irrational
rotation by o € (0,1). If we modify 1 by 1y ) — a which is a coboundary,
then for ¢ 1= ¢ + 1jg ) — @ we have E(p) = £(y) = Z; here I'y; = Z and
¢ mod E(p) = —a.

2.2 More about irrational rotation

Lemma 2.2.1. 1) Let p,q be two coprime positive integers and 0 = q(co — ’5)
with 0] < %. When 6 > 0, each interval [%, %), 0 <j <q—1 contains one
(and only one) number of the form {ka}, with 0 <k < qg—1. When 6§ <0
the same is true for j = 1,...,q—2; there are two points ka (one for k =0)
in [0, i) and no such a point in |2 1, 1).

2) For each x € T the dzstance between two consecutive elements of the
set {{x—l—k‘a}: k:O,...,q—l} i3<§

3) There are at most two elements of the set {{x+ka} ck=0,...,q— 1}
in any interval on the circle of length % (hence at most four such elements
in any interval of length %)

4) If additionally q = q,, the distance between two consecutive elements
of the set {{x—ka}: k:O,...,q} s > i.

Proof. The map k — j(k) := kp mod ¢ is a permutation of {0,1,....¢ — 1}.
If 6 >0, then {ka} = {k(2 + 2)} = J(k) + k9 is at distance kqe 1 from (qk)

hence it is in the interval [Z f) J(k;“)

the first assertion follows.

Assertion 2) is true for x = 0 by 1); hence, because the distance is invari-
ant by translations, it is true for any z € T.

For 3), suppose that there are {x+k1a} < A{x+koa} < {x+ksa} distinct
in an interval of length < 1/¢q. We have ¢ S kot <{ksa} < {ksa} < €+2

£ ”1) or [”1, ”2) contains two points of the set {{ka}

0<k<q-— 1}, which clearly contradicts 1).

The proof is similar if 8 < 0. Hence

for some £. Either [,
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4) We have the following

Lo L gl < ljall Vi1l <
e . Qn—la -~ ]Oé ) ]a ] qn
26]71 Qn + anl

and the assertion follows. O
The first assertion of Lemma [2.2.1] implies easily the well-known Denjoy-

Koksma inequality: let ¢ be a centered function of bounded variation V()
and p/q a rational number (in lowest terms) such that |o —p/q| < 1/¢?, then

)| < Vi(p). (2.2.1)

Indeed, let us consider the case # > 0 (the proof is analogous when 6 < 0).
We can assume x = 0. For j = 0,...,¢ — 1, there is one and only one point
{kja} of the set {{ka},k=0,..,g— 1} in I; == [, %) Given an interval
I C [0,1) denote by V (¢, I) the variation of ¢ on I. Notice that if z,y € I
then |p(z) — ¢(y)| < V(p,I). Since [ dt =0, we have:

({kia}) — a [ () dt| = e({kja}) — e(t))dt

171 [(G+D/a (G+1)/
> [ edkal) - |m<qz/ 0. 1))
j=0 jla
—1
> Vi, L) < V(o).
=0
Notation: For f € [0,1), L(/) denotes the set of limit points of the
sequence (||gnB])n>1-
Another important quantity is 3 := info<|ji<,, |3 — jal|. We have the
following properties for 5 and the set £(3):

<q
q
J

Lemma 2.2.2. 1) If there exists ny such that

0= nf 5~ jall < Slawnol, Vzno,  (222)
0<[jl<gn 2

then B € Za + 7.

2) Suppose « is of bounded type.

a) If B & Za + Z, then there exist ¢ > 0 and an increasing sequence (ny)
such that, for every k > 1, || — ja|| > ¢/qn,, for 0 < |j] < gn,.

b)If B =Lta+% e (Qa+Q)\ (Za+Z), then there exists ¢ > 0 such that
18 = jall = ¢/qn, for 0 < [j] < g, (n > 1).
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Proof. 1) For each n > 1, consider the family of intervals I = [{ja} —
%HQn—l—lO‘Hv {]a} + %HQn—l—lO‘H]a J=—t®+1 ., —1

Letn>mng. fje{—q.+1,....¢n—1}and j € {—Gni1+ 1, ..., Gne1 — 1}
are distinct, then the intervals I7 and Iﬂ;/ﬂ are disjoint, since otherwise by
||(]I_J)a|| < %HQn-l—lO‘H_’_%HQn-i-?O‘H < ||Qn+1a||’ with 0 < |j/_]| < qntQn+t1 <
Gn+o Which contradicts .

By , there is a sequence (j,)n>ng, such that 0 < |j,| < ¢, and
B € Ilm forn > ng.

Since 8 € [I"NI)"4, we have jo := juy = jn, = .... This implies 8 = {joa}
which completes the proof of 1).

2a) By part 1) if § & Za + Z, it follows that there exists a sequence (ny)

such that || — jo|| > $|gn, 1|, for 0 < |j| < gy, and k > 1. Suppose addi-

tionally that « is of bounded type. Since ||gn,+1¢|| and qi are comparable,
"k

there is ¢ > 0 such that ||8 — jo| > ¢/q¢y, for 0 < |j| < gn,.

2b) Now let 3 = Lo+ % & Za+Z with t,7, u, s integers and r,s > 1. Let
jn be such that e, := minjo<|jj<q, 2o+ % — jof| = [ fa+ % — jaf > 0.

We have $a+% = jna+ L, £ &,, for an integer ¢,; hence: (rsj, —ts)a =
ru — rst, £ rse,. It follows

|(rsjn —ts)a|| < rslen. (2.2.3)

Suppose that rsj, — ts = 0 for infinitely many n. Then f = j, and

|u—sl,| = s|e,|. Since |e,| is arbitrarily small for n large enough and w, s, ¢,

are integers, it follows u = sf,,. Then, we find 8 = j,a + {,, contrary to the

assumption that [ is not in Za + Z. 1t follows that the integers rsj,, —ts are
different from zero for all n > n;.

Now, «a is of bounded type, so there is K > 0 such that ¢, ,.s11 < K ¢y,

for every n > 1. Using additionally (1.9.3) and ((1.9.4]), we obtain

1 1
2K dn o QQn—H‘s-l—l

< N gnars || < ||ka||, for 1 < |k| < Gnirsi1-  (2.2.4)

On the other hand, in view of ((1.9.1)), given any constant C' > 0 we have

for all m > 1 and n large enough (indeed, it suffices to consider n so that
qn-1 > C). Hence, for the integer |rsj, — ts| we have

0 < ’TSjn - tS’ S Sqn + ’t‘s S Antrs+1
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whenever n is large enough. Therefore, for n large enough, by (2.2.3)) and

(2.2.4]), we obtain
1

2K’
By taking ¢ > 0 smaller if necessary, the conclusion holds for all n > 1. [

len] > ¢/qn, with ¢ =

Lemma 2.2.3. Suppose « is of bounded type. Let B be a non-empty finite
subset of (QB + Qa+ Q) \ (Za + Z), where (3 is a real number. Then there
exist ¢ > 0 and a strictly increasing sequence (ny) such that

vﬁl € B, vk > 17 Hﬁl _jOé” > C/ana fOTO < |j’ < Qny, -
Proof. We have B = By U By, where

{/817/81_ +7W1thu’t7wlvslezS’L#Oﬁlgza—i_z}

By ={B;; 8 = fﬁ v —, with v;, u;, w;, s; € Z and v;, s; # 0}.
Si Si i
Remark that By or B; can be empty and that B = By if § € Qa + Q.

If B¢ Qa+ Q and B; is not empty, we apply Lemma to ' =
(I[Twe)B. There are a positive constant ¢ and a sequence (ny) such that

. C .
18" = jell =2 —, 0 < |j] < -
Qny,
Let M = (max s¢)(ITve), M; = 8; [1r; ve. We have * B = 5/
Since L; := M; “l and M; “’1 are integers, we have for 7 Such that 0 <
U; wj

SSE s 2e-3)
S; S;

i Si Si

N
We have M;|j| + |L;| < M|j| + L, with L := max|L;|. As « is of bounded
type, there are r and K such that Mq,_, + L < g, < Kq,_,, for all n > 1.
This implies, simultaneously for every i:

1 . .y
S Mo 2ol = 18 (Mg~ Loall > 4 1] < quere

1
= )
S; Si Si i MK Any—r

For §; in By, if this subset is non empty, by the part 2b) of the previous
lemma any subsequence of (g,) is “good”.

We conclude that the subsequence (¢, —r)r>1 fulfills the assertion of the
lemma. ]
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Remark 2.2.1. As the proof of Lemma [2.2.3|shows, the result is true for any
change of the part belonging to Qa+Q for the elements of B; (that is, we may
replace uloz + %, for i = 1,...,t, by a different element of Qa + Q). However,
each tlme we change this part we also change the resulting subsequence

(Gns,)-

Remark 2.2.2. When « is not of bounded type, the set K(a) = {8 € R :
lim,, ||¢.5|| = 0} is an uncountable additive subgroup of R.

Nevertheless, if lim, ||¢,5|| = 0 and 8 € Za + Z, the rate of convergence
toward 0 is moderate, as shown by the following lemma (see [6], [22], [21],

7).

Lemma 2.2.4. If there exists ng such that ||g.8| < iqn|gnc| for n > ne,
then 8 € Zo + Z. In particular, if o is of bounded type and [ satisfies
lim, ||¢.0]| = 0, then B € Za + Z.

2.3 Step cocycles over an irrational rotation

In this section, we study the regularity of a step R%valued cocycle ® =
(o, ..., %) over an irrational rotation T : z — x+ . For such a cocycle the
coordinate R-valued cocycles ¢/ are integrable and we will constantly assume
that [, ¢’ du = 0 with 1 = my the Lebesgue measure on T, for j = 1,...,d.

2.3.1 Representations of step cocycles

The coordinates of ® = (!, ..., ¢?) can be (uniquely) represented as follows:
g I) = Zti,j (ﬂli,j (.T) - ,u([i,j»a (2.3.1)

where, for j = 1,....d, {I;,;} is a finite family of disjoint intervals of [0, 1)
(covering [0,1) and maximal on which ¢’ is constant) and ¢; ; € R. Clearly,
when d > 1 is fixed, the family of step cocycles form a linear space over R.
Settlng 51’]‘ = M(L’]) and ¢i’j = :ﬂ_[i,j - 61'7]‘, we have '(ﬂ;’] (.T) =
Sl 1., (x+ka)—np; ;; hence the cocycle @), can be written in the following

form:
Ztu by (x th U’(n) —{nBi;}), (2.3.2)

with the notation (which is not a cocycle expression)

n—1

) (2) = 8 (@) + {nfiy} = 3 1, (¢ + ka) — [nBiy] € 2. (2.3.3)
k=0
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Remark 2.3.1. Without loss of generality, we can assume that the difference
between any two discontinuity points of the cocycle ® is never a multiple of «
(modulo 1). Indeed, if § and ' are two discontinuity points of a component
of ® such that 5’ — 8 € Za + 7Z, we can suppress one of them by adding to ®
a coboundary, without changing the ergodic properties of ® (we use the fact
that Lz gy (x) — (8 — B) is coboundaryED. In particular, after modification,
the lengths 4(1; ;) in the representation of the new cocycle are not in Za+Z.

2.3.2 Rational step cocycles

Assume that ¢ : T — R is a zero mean step cocycle with its unique repres-

entation (2.3.1)) of the form

m

= ti(lr, —p(l)). (2.3.4)

i=1

Definition 2.3.1. We say that ¢ is rational if there are ¢; € Q, 1 =1,....m
and § € R such that

o= ¢l —B. (2.3.5)
i=1

Lemma 2.3.1. Assume that ¢ : T — R is a (zero-mean) step cocycle. The
following conditions are equivalent:

(i) @ is rational.

(ii) There exists w € R such that in the unique representation of
@ we have t; € w+ Q fori=1,....m.

(iii) ¢ takes values in a coset of Q.

In particular, the family of rational cocycles is a linear space over Q.

Proof. (1)=(i) By (2.3.4), ¢ = 3%, tily, — 7, where v = 33, t;u(I;). For

x € I; we have
¢ —B=p(x) =t —,
sot; €(v=p)+Qfori=1,...,m.

#Indeed, we have 1j_q 1)(x) — a = j(z) — j(z + ) with j(z) = {z}, then for integers
k,s

]1[1,{ka+5}71)(1‘) — {k:a + S} = ]l[lf{ka},l)(x) — {ka}
=Jj(x) —j(@ + ka) = jr(z) — ji(z + a).

The general case is obtained using the obvious fact that other rotations commute with
Tz =x+ .
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(ii)=-(iii) For some r; € Q, i =1,...,m and x € [0,1) we have

o(x) = 3w+ 1) (s (2) — p(L;)) = ﬁ;nw) Fw-1)€ -1 +Q

i=1
(ili)=-(i) Take the unique representation (2.3.4]) of ¢: p = > ;1 —~

with v = Y7, t;u(1;). By assumption, there exists n € R such that ¢(x) €
n+ Q for each z € [0,1). Thus, for x € I; we have

ti—y=p(@)=n+r

for some r; € Q. Whence t; € (y+ 1)+ Q fori=1,...,m.
The latter assertion follows directly from (iii). O

Suppose that ¢ is rational with a representation (2.3.5) and let ¢ =
Y, il —p (with ¢, € Q) be another rational representation. Then by (iii)
of Lemma it follows that 8 — ' € Q, in other words, in the rational
representation the coset 8+ Q € R/Q is unique. By S(p) we will

denote that coset (in fact, less formally it will be the number 3 in (2.3.5)
understood modulo Q). Note that
o(x) € B(p) forall z e T.

With this in mind we have immediately the following observation:

Lemma 2.3.2. Assume that ¢',...,0% : T — R are rational step cocycles.
Assume moreover that a; € Q for j =1,...,d and set p = Z?Zl ajp’. Then

Ble) = ;ajﬁ(soj)-

Now, let d > 1.

Definition 2.3.2. We say that a step cocycle ® : T — R? is a rational step
cocycle if its coordinates ¢/ are rational, i.e.:

o' =2 il — B, (2.3.6)

where the coefficients ¢; ; are rational numbers and 3; is such that f @ldp =
0,7=1,....d.
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In this case, by replacing ® by its non-zero integer multiple so that all ¢; ;
are integers (recall that a non-zero multiple of a cocycle ® shares its ergodic
properties with ®) we obtain:

P(a) = uly (@) — {ny}, n 21, (237
where the functions u{n) have values in Z.

Below we write 8; = B;(¢?) = B;(®) (in the representation (2.3.6)) to
stress the dependence of the 3;’s on the cocycle ®. The number of discon-
tinuities of ® is denoted D(®).

We denote by L£(;) the set of limit values of the sequence (||¢.05;|| )n>1-
Observe that if L£(5;) # {0}, there exists a sequence (ng) such that
limg{gn,8;} € (0,1). Let L := max,;;V(¢™) in case (2.3.2), or L :=
max; V(¢’) in case (2.3.7)), where V is the variation.

F will denote the interval of integers

F={{eZ:|{|<L+1}. (2.3.8)
From ([2.2.1)), (2.3.7) and ([2.3.3)), it follows that:
u{qn)(x) e F, uijn)(x) e F. (2.3.9)

Lemma 2.3.3. Let ® be a rational step cocycle. If L(f5;,) # {0} for some
Jo, then E(P) contains a rational vector § = (b4, ..., 04) with 0;, # 0.

Proof. By multiplying ® by an integer if needed, we can use ([2.3.7)) with

U,y () € Z. We can select a subsequence (ny) so that ({gs,3;})>1 converges
for all j = 1,...,d to a limit denoted ¢;, with d;, € (0,1). Taking into

account (2.3.9)), denote for (¢4, ...,44) € F¢
gd:{.%ET:uz ) =4, j=1,...,d}.

yClyeeey an

Note that, for each k > 1, {Ase,. 0, : ((1,...,0s) € F4} is a partition of
T. By passing to a further subsequence if necessary, we can assume that
w(Arey.0)) = Ver..n, when k — oo, for each (¢y,...,0q) € Fe In view

of (2.3.8), (2.3.7)) and the fact that [’ du = 0, we have

leF
1 1 .
/0 U{an)(f) dx = /0 (pr]ik () + {anﬁjo}/> dr = {anﬁjo}, — Ojo.-
It follows that

Z 14 Z Vea,..., Lio—1:4Ljg+15-0a — 5j0 (2'3'1())



2.3. Step cocycles over an irrational rotation 35

with d;, € (0,1). Hence there are £ # ' such that

Z Ver,.. g —1,.L50115,0a >0
Lyeilio—1L50+15--Ld €EF
Z Yoy, lig—1,8' Lig41,-rla > 0;

Indeed otherwise, >-,, Cio—1:big 41 la€F Vet 1,60, 410 bt = 1 for some ¢, €
F and the other sums are 0, so that the left hand side of (2.3.10]) is an integer,

a contradiction. This implies

Verselig1bigrirta > O Ve e ey >0,
/ U U /
for some d—1-uples ({1, ... jg—1,ljor1, -5 la) and (€1, .. 05 00 oo 0y).

By Lemma it follows that

(U — 61, it — 1oL — S0, Ljgss — Ojosts - -+ Ly — 84) € E(®),

(6 =61y Uy = Gjors = 830, Uiy — Byt s Ly — 64) € E(D).

J

Thus (6 =0, ..., 0=, ... L=, € E(®) with £—¢ # 0 which completes
the proof (for the initial ® we have to divide by an integer and obtain a non
zero essential value with rational coordinates). [

Theorem 2.3.4. Let ® be a rational step cocycle with values in R. There
are d(®), 0 < d(®) < d, and a change of basis of R given by a rational
matriz M such that M® = (@', ..., pU®) U@+ 5d) satisfies:

1) E(M®) contains the subgroup generated by

(1,0,...,0),(0,1,0,...,0), ..., (0,0, ..., 1,0, ..., 0),
———

dA(®)

2) the cocycle ® = (@UH1 __ 34) is a rational cocycle like and
satisfies limy, ||g,0;(®)|| =0 for j =d(®)+1,...,d.

Proof. We will apply successively Lemmas , and . If £(5;) =
{0} for all j =1,...,d, we put d(®) = 0. Suppose not all L(§;) are equal
to {0}, say L£(61) # {0}. Then by Lemma [2.3.3] there is a rational vector
0=(0,...,0y) € E(P) with 0; # 0.

Take a linear (rational) isomorphism M; of R? so that M;(0) = e,
where e; = (1,0, ...,0) and consider M;(®) = (¢),...,¢}). The step cocycles
Oy, ..., ¢} have their own representation @ with 3} instead of 3;. We
now look at £(3}) for j = 2,...,d. If all these sets are equal to {0}, we set
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d(®) = 1 and the proof is finished. Suppose not all L(}) for j = 2,...,d are
equal to zero, say L£(f5) # 0. We apply Lemma to M;(®) and obtain
0 = (0,,0,,...) € E(M;P) with 6, # 0. Note that e; and #" are linearly
independent. Then consider a linear (rational) isomorphism M, of R that
fixes e; and sends 6’ to ey and set

My(Mi(®)) = (1, ¥5, - - -, )

(this cocycle has e; and es as its essential values).

Again, these new cocycles (except for ¢)) have their own representa-
tion with 37 for j =2,...,d. We now look at L(3}) for j =3,...,d.
If the sets £(3}), j = 3,...,d, are equal to {0} we set d; = 2 and the
proof is complete. If not, say L£(85) # {0}, we obtain a rational vector
0" = (0],05,0%,...) € E(My(M,(®P))) with 65 # 0. Then consider a (ra-
tional) linear isomorphism Mz : R? — R? fixing e, e and sending 64 into e3
and pass to the cocycle Mz(My(M;(P))). We complete the proof in finitely
many steps. [

Reduction in the bounded type case

If we find d(®) = d in Theorem [2.3.4) then the group £(P) contains a
subgroup with compact quotient in R? and hence the cocycle ® is regular.
This is the situation of the following theorem:

Theorem 2.3.5. Let « be of bounded type. Let (B, ..., Ba) be such that there
is no non trivial rational relation between 1, B, ..., 84. Then the cocycle

-----

at {0, 51, ..., Ba} and dimension d' < d is reqular.

Proof. We use the notation of Theorem 2.3.4 If d(®) < d, then we have
lim,, ||gn3;(®)|| = 0 for j = d(®) 4+ 1,...,d. As a is of bounded type, taking
into account Lemma [2.3.2] and Lemma we find a non trivial rational
relation between the numbers b’j(@). Since the changes of basis are given
by rational matrices M, this gives a non trivial rational relation between
1,a, B, ..., Ba, contrary to the assumption of the theorem. Therefore d(®) =
d and the cocycle ® is regular. For the second statement, observe that, if
d < d, ¢ is the image of ® by a linear map (c.f.([2.3.1))). It is regular if ® is
regular by Lemma [2.1.3] O

Remark 2.3.2. a) Application to non rational cocycles
The previous proof is based on the concept of rational cocycle, but applies
even to non rational cocycle.
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As an illustration of the result, let us consider the cocycle: ¢ = 01} gy —
Logp), with (1, ,63) rationally independent, § ¢ Q and 3,05 € [0,1).
This cocycle is not rational, but obtained from the cocycle ® = (1 g —
B, 110,08y — 053) by the map (y1,y2) — 0y1 — y2. For a of bounded type,
and therefore also ¢ are regular (Theorem [2.3.5)).

b) In the bounded type case, the reduction given by Theoremreduces
to a cocycle of the form such that 8; € Za+Z for all j =d; +1,...,d.
We can even obtain 3; = 0 by using the identity: o = Ip_q1)(z) + j(z +
a) — j(z), for 0 < a < 1, where j(z) = {x}.

Reduction in the unbounded type case, |/g,53;|| — 0

If g f3;]] = 0, Vj and B; & Za+ 7Z (a situation which can occur only for
a not of bounded type), the previous method of reduction cannot be applied.
Nevertheless, there is a first step reduction, based on another method.

Lemma 2.3.6. Let ® be a step function with D = D(®) points of discon-
tinuity. We have u(Aqo(®)) > 1 —2Dqe, with € = {||qga||, where

Age(®) = [ {z €T: ®y(x) = Py + sqa)}, ¢, ¢ > 1.

1<s<¥¢

Proof. Let A be the set of discontinuities of ®. If x ¢ A, ,(®), we can find
s, 1 <s </ and j, 0 < j < g, such that ®(z + ja) # ®(x + ja + sqa).
This implies that ® has a discontinuity at d on the circle between x + ja and
x + ja+ sqa, and therefore = belongs to the interval (0 — joo —e,d — ja+¢)
because sup; <, ||sqa| < £||ga||. Now, the complement of A, ,(®) is included
in the set Uy<;cqsea B(t — ja, €), whose measure is less than 2Dge. O

Proposition 2.3.7. Let & = (19 3,) — 3;,j = 1,...,d). Suppose 3; ¢ Lo+ Z
and ||q.B3;|| — 0, Vj, then E(®) contains a non zero vector in Z* or a non
discrete subgroup of R,

Proof. For n > 1, we can write (cf. [2.3.7): ! (z) = ﬂ{n)(x) — ¢||np;||, where

e ==1 and ﬂ{n) is the integer valued function
iy =l i {nB} = Ingjll, @, = uly + 1if {nf;} = 1—[Ing;|.

a) If u({z € T : ﬂjn (x) = 0}) 4 1 for some jg, the proof is similar to
the proof of Lemma [2.3.3} by passing to a subsequence if necessary to ensure

the convergence of all components Lpgn, we find that ® has a quasi-period
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(p1, p2s .- pa), With pj, # 0. It follows that £(P) contains a non-zero vector
in Z<. ‘

b) Now, we can assume lim, u({z € T : @/, ,(z) = 0}) = 1, for every j.

By Lemmathere is a sequence (ny,) such that [|gn, 51 > Tqn,|lgn. |-
We put Ly = [n/[gn,A1]], k> 1, where n is such that n < 5.

There is at least one index jy such that, infinitely often, ||¢,,[5),| is the
biggest value of the set {|/¢.,5;ll,7 = 1,...,D(®)}. Hence for j, and an
infinite subsequence, still denoted (ny), we have

0 < {gn, B5ll < llani Bso I, V3.

In particular, we have ||gn, Bj || = 3¢n ||, c|-
Using the notation and the assertion of Lemma [2.3.6] we have

1
M Agy 1 () > 1 = 2Dgy, Liellgne ol 21— 8D = 5.

Moreover, using the definition of A,, r,(®), for z € A, 1, (P) and ¢ < Ly,
we have

g, (1) = (®q,, (1) = (Cafy, () = lllgn, By, 5 =1, .., d)

with e = £1. Let p € (0,n). Put £, := [p/|¢n. B0 lll < n/|l@n,Bill < Li + 1.
We have, for z € Ay, 1,(®), outside of a set of measure tending to 0,

P, (1) = bl (@) = beify, (@) =ebillgn,Bioll = £lp/ I n. B ] . B | = £

For the other components j # jg, outside of a set of measure tending to 0,
we have on A, 1, (®),

P, () = lupy,, (1) = bty (2) = elillgn, 551l = £ Bill [/ | g Bio |-

P 1@, 55l /|| gn,, Bio || < p. Passing to a subsequence still denoted (ny) if neces-
sary, we obtain that outside of a set of measure tending to 0, on Ay, 1, (®P)
the sequence (®y, 4, (7)) converges to the vector (p1, p2, ..., pa)-

Now, the measure of Ay, r,(®) is bounded away from 0 and the sequence
(Ckqn, ) is a rigidity sequence for T', since ¢, < Ly + 1 and

The above quantity is bounded, since ||gn, 551 [0/l@nBill] <

g Bl = G

Li||gn,]] <1

It follows that, for an arbitrary p € (0,n), £(P) contains a vector
(p1, p2, -y pa) € E(P), with p;, = p. It follows that £(P) includes a non-
discrete subgroup of R O]
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Remark 2.3.3. Lemma [2.3.3] and Proposition [2.3.7 show that, in dimension
1, for @ = 10— B3, if f € Za+Z, the group E(P) contains at least a positive
integer.

2.3.3  Well separated discontinuities, clusters of discontinuities

The previous method was based on Diophantine properties of the values of
the integrals for rational cocycles (c.f. ) In this subsection we present
results relying on diophantine properties of the discontinuities of the cocycle.
We give sufficient conditions for regularity of the cocycle defined by a step
function ® : T — R with integral 0.

The set of discontinuities of ®,(z) = Y725 ®(r+ka) is D, := {{xi—ka} :

1<i<D0<EkK< n} We assume that the points x; — ka mod 1, for
1 <4 < D,0 < k < n, are distinct. The jump of ¢ at z; is 0; = o(x;) =
P(xf) — CID( x; ). A discontinuity of the form {z; — ka} is said to be of type

ZT;.
By Lemma [2.2.1] any interval of the circle of length > 2/g,, contains at

least one point of the set {{xl —kal,k=0,...,q, — 1}, hence at least one
discontinuity of ®,, of type z; for each z; € D.

Well separated discontinuities

We write D,, = {1 < ... < Yopn < 1} and ¥, pnt1 = Yn1, where, for
1 < ¢ < Dn, the points =, run through the set of discontinuities D,, in the
natural order.

Definition 2.3.3. The cocycle is said to have well separated discontinuities
(wsd), if there is ¢ > 0 and an infinite set Q of denominators of « such that

Yq,e+1 = Vgt 2> C/q7 vq € Q> te {17 te 7DQ} (2311)

This condition is similar to Boshernitzan’s condition ([5]) for interval
exchange transformations. The result below extends an analogous statement
when @ takes values in Z¢ (see [9]).

Theorem 2.3.8. Let ® be a zero mean step function. If ® satisfies the wsd
property (2.3.11), then the group E(P) includes the set {o; : i = 1,...,D}
of jumps at discontinuities of ®. Moreover, ® is reqular.

Proof. Let us consider ®,(x) for ¢ € Q. By (2.3.2) and ([2.3.9)), we can write,
with ug) () in a finite fixed set of integers J,

¢, = (805) .d With Spq Zt i, u Zt i,j {Q5m
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Let 09 = (04,7 = 1,...,d) with 0,, := —>,;t;;{gB:;}. We can assume
that the limit 8 := lim QQ(q) exists. The set of values of ®, for ¢ € Q is
qg—00,q¢<

included in R+ 0@ where R is the finite fixed set of vectors {(3;¢; ki , 7 =
1,...7d> : ki,j € .F}

Let Z, be the partition of the circle into the intervals of continuity of ®,,
Lo = Vg0, Vgu+1), 1 <€ < Dq. With the constant ¢ introduced in ,
let J,, C T be the union of L := |2/c| 41 consecutive intervals in Z, starting
with 1, ,. By every J, ¢ has length > 2/¢, thus contains an element
of the set {{:1:Z —sat,s=0,...,q— 1} for each x;.

Therefore, for every jump o; of ®, there is v € R and two consecutive
intervals I, I’ € T,, with I UI' C J, 4, such that the value of ®, is v 4 6@ on
Iand v+609 40, on I'.

Given i € {1, ..., D}, we denote H,(0;) the family of intervals I € Z, such
that the jump of ®, at the right endpoint of I is o;. Since each interval J,,
contains an interval I € H,(0;), the cardinality of H,(0;) is at least %2.

Fix additionally v € R and let A,(c;,v) be the set of intervals I € H,(o;)
such that ®,(z) = v+ 09 on I. Let A/(0y,v) be the set of intervals I’ € Z,
adjacent on the right to the intervals I € A,(0;,v).

Let Ay (o, v) be the union of intervals I € Ay(o;,v) and A (0;,v) the
union of intervals I" € A (0, v). The value of @, is v + 0@ on A,(0;,v) and
v+ 09 +0; on Al (07, 0).

There is vy € R and an infinite subset Qg of Q such that, for ¢ € Q,

|Hq(‘7i)| S qD ‘
Rl LIR|

By (2.3.11) and ([2.3.12), we have u (A,(0i,v0)), 1 (Ag(ai,v%z @%%.
Thus vy +0 and vy + 0+ o; are quasi-periods, hence, by Lemma essential
values. Since £(®) is a group, o; is an essential value. Therefore £(®) includes
the group generated by the jumps of ®.

Finally, notice that the quotient cocycle ®/E(®) is a continuous step
cocycle, hence is constant. Therefore, the regularity of & follows from

Lemma 2.1.100 L]

For &, := (ﬂ[oyﬁﬂ—ﬁj, ji=1, ...,d) with 3; # B; whenever ¢ # 7, the jump
of @4 is (1,...,1) at 0 and (0,...,0,—1,0,...,0) at §; (—1 stands at the j-th
coordinate), j = 1,...,d. If the wsd property is satisfied, the group £(®)
includes Z¢. Therefore the cocycle ®, is regular whenever the wsd property
holds.

In view of Lemma and Theorem [2.3.8] we obtain the following result
(where the case § € Za + Z can be treated directly).

|Aq(oi,v0), AL (03, v0)] >

(2.3.12)




2.3. Step cocycles over an irrational rotation 41

Corollary 2.3.9. Let a be of bounded type. Let 5 be a real number.

1) The cocycle (1yo,z)(.) = £, Tjo,2)(- +8) — %) is regular for every rational
number £ € (0,1).

2) If 2y ’;—Z are rational numbers such that 0 < Z—B < 1, then, for every
real numbers ty,...,tq, the cocycle p =3, tiﬂ[()%m -6 t,g—j is reqular.

Clusters of discontinuities

For a subset C' of discontinuities of ®, we denote o(C) = ¥ ,.cco(z;)
the corresponding sum of jumps of ®. The number of discontinuities of ® is
D = D(®). The following result can be useful when the discontinuities are
not well separated.

Theorem 2.3.10. Suppose that there are two discontinuities x;,,x;, of ®
and a subsequence (qn, ) such that for a constant k > 0 we have

Ui || (zig — x5,) — || > Ky Y |r| < g, (2.3.13)

Then, if the sum o(C) is # 0 for each non-empty proper subset C of the set
of discontinuities of ®, then ® has a non trivial essential value.

Proof. By Lemma any interval of length 2/g, on the circle contains at
least one discontinuity of each type x; and at most 4 such discontinuities,
therefore at most 4D(®) discontinuities of ¥, .

Consider the sequence Q = (gy, ) of denominators satisfying (2.3.13). On
the circle T we will deal with families of disjoint intervals of length 4/, . In

fact, we consider families of the form {Ij(k) cj€eJr CH0,1, ..., qn, — 1}} with

IJ(»k) =M +{—ja}, where 1P = [0,4/qn, ] and Ji is such that its cardinality
satisfies |J;| > 61¢,, for a fixed positive constant 6.

The number of different “patterns of discontinuities” (i.e. consecutive
types of discontinuities) which can occur altogether in these intervals is fi-
nite (indeed, the length of a pattern of discontinuity is bounded by 8 D(®)).
There are an infinite subsequence of Q (still denoted by Q) and a family of
intervals 1§ + {—ja}, j € J| with |J}| > 02q,, for a fixed positive constant
d3 (therefore with a total amount of measure bounded away from 0) such that
the same pattern of discontinuities occurs in each interval of the family. For
illustration, if the cocycle has 4 discontinuities 1, x2, 3, 4, We can have for
instance in each interval the pattern (1, x3, x4, T3, T2, T1, T2, T4), correspond-
ing in a given interval to the “configuration” (a sequence of discontinuities) of
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the form ({Il —fj’l()é}, {xg—fj’g()é}, {x4—€j,3a}, {x3—6j140[}, {x2—€j,5o¢}, {xl —
lisat, {we — liza} {ws — {isa}).
Now, by taking a further subsequence of Q if necessary, we will assure

a convergence at scale 1/g,, for the discontinuities in ](k). More precisely,

observe that if {z; — la} € [](k), then {z; — la} — {—ja} € 1P, Hence
{z;,—({—j)a}isin 1" and therefore it belongs to the set {{xl —ua}: |ul <

an} N I Notice that this set {{xZ —uat: |ul < an} N I has at least 2
elements and has no more that 8 elements and it does not depend on j (when
k changes, the set J; does and so j are different for different k, however the
common shift, namely the shift by ja, leads to points which will be common
for all j € Ji; on the other hand r runs over a fixed set as the patterns of
discontinuities are the same regardless k and j). Therefore we can write it

explicitly as {{xl — unkﬂ-,roz}}.

We can extract a new subsequence of Q (for which we still keep the
same notation @ = (g, )) such that for each {z; — u,, ;,a} the sequence
Qn{Ti — Un, iy} converges to a limit y;, € [0,4] when k& — oo. This is
possible, since there is a finite number of such points in Iék) for each ny,.

Therefore the configurations of discontinuities in the intervals I](k) for
j € Jj are converging at the scale 1/gq,,, i.e. after applying the affinities
r = gn, (x —{—ja}). We can group the discontinuities (of type) z; according

to the value of the limit y; ,.

We call “clusters” the subsets of discontinuity points in I](k) with the
same limit at the scale ¢,, (hence, such that the corresponding limits y;, in
0,4] coincide). Observe that two discontinuities of the same type z; are at

1

distance = 5.— by the point 4) of Lemma [2.2.1| and therefore are not in the
g

same cluster: a cluster contains at most one discontinuity of a given type x;.
In view of (2.3.13)), the number of elements in a cluster is strictly less than
D(®) the number of discontinuities of .

By passing once more to a subsequence of Q (still denoted by Q = (¢x,))
if necessary, we extract a sequence of families of disjoint “good” intervals of
length 4/q,, with the same configuration of clusters inside the intervals of
a family. There are at least three different clusters in each “good” interval
(since for an interval of length 4/¢,, a given type of discontinuity occurs at
least twice and must occur in different clusters as shown above, moreover the
number of elements in a cluster is at most D(®) — 1). The clusters in each
interval are separated by more than ¢/q,,. As in the proof of Theorem ,
the values of the cocycle at time g,, are v+ 6l) with v in a fixed finite set
and (6\@)) a converging sequence.
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For k large, clusters of discontinuities are separated by intervals of order
¢1/qn, for a fixed positive constant ¢; and there are at least 3 clusters in

a “good” interval Ij(k). The number of intervals in the families is greater
than a fixed fraction of g,,. It follows that, under the assumption that the
sum of jumps o(C') is # 0 for each non-empty proper subset C' of the set of
discontinuities of ®, the cocycle at time g,, is close to a non zero constant
on a set which has a measure bounded away from 0.

Therefore there ® has a non trivial quasi-period, hence a non trivial finite
essential value. ]

Examples of application of Theorem [2.3.10

Recall that by Remark 2.3}, if 1, ..., zp are all discontinuities of a step
cocycle @, then for i # j we can assume that z; — z; is not a multiple of
« modulo 1. Assume that « is of bounded type. Then, fixing iy # j, and
using Lemma to select a subsequence (g¢,, ) so that holds for a

constant £ > 0, the assumption of the theorem are fulfilled.

Example 1: cocycle with 3 discontinuities

Let a be an irrational number of bounded type. Let ¢ be a scalar cocycle
with 3 effective discontinuities 0, 5,7. The sum of jumps for the 3 discon-
tinuities is 0, and for subsets of 1 or of 2 discontinuities it is always non
zero. If  (resp. 7y) is not in Za + Z, by Lemma there are subsequences
of denominators along which the discontinuities of type 8 (resp. ) belong
to clusters which reduce to a single discontinuity or to two discontinuities.
Therefore, by Theorem the group of finite essential values does not
reduce to {0}.

Example 2: cocycle with 4 discontinuities

Let us consider the R-valued cocycle a(1pg)(-) = 8) — (Lpg (- —7) — B)
with 5 < 7.

There are 4 discontinuity points: (0, 3,7, 8 + 7) with respective jumps
+a, —a, —1, +1.

Assume that § is such that there is a subsequence (g,,) and a constant
x > 0 such that

We apply the method of Theorem , with the subsequence (g¢,, ). By
the above condition on /3, in a cluster we can find either a single discontinuity,
or two discontinuities of type in (0,7), (0,8 + ), (5,7), (8,8 + 7) with
respective sum of jumps: a — 1, a + 1, —(a + 1), —a + 1. The case of 3
discontinuities is excluded.
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Therefore, if a ¢ {£1}, we have a non trivial essential value. When
a = —1, then the cocycle reads —1jg 5)(-) — Ljo,3)(- —7) + 23, and by Theorem
2.3.5] or the method of Proposition [2.3.7 we obtain a non trivial essential
value.

So for the classification of the cocycle a(Ljg ) (-) — B) — (L8 (- —7) — B)
the only case to be considered is a = 1. This leaves open the question of the
regularity of the cocycle 1jg)(-) — (Ljo,3)(- — 7) for o of bounded type and
any [3,7.

We would like to mention that when 8 = 1/2 and « is of bounded type
the regularity (for each v € T) has been shown recently by Zhang [52] using
different methods. In fact, Zhang shows that the cocycle ® = (1g1/2)() —
1/2,1p0,1/2)(- +7) — 1/2) is regular (whenever « is of bounded type).

The regularity of ¢ follows also from Lemma [2.2.3] and Theorem [2.3.8
(see Corollary [2.3.9).

Example 3 The method of Theorem can be applied to the lower dimen-
sional cocycle: ¢ = lpg — lp,) — B + v when (1,«,,7) are rationally
dependent.

2.3.4 On the regularity of &4, d =1,2,3

d: 1, (I)l — ]]_[075) — ﬂ

Theorem 2.3.11. The cocycle P = 1jo,3) — B is reqular over any irrational
rotation.

Proof. If B € Za +7Z, then ®4 is a coboundary (see Remark . Suppose
that 8 € Za + Z. Then, by Lemma [2.3.3] and Proposition there is a
positive integer in the group £(®) (cf. Remark [2.3.3). Therefore the cocycle
5 is always regular. O

Remark 2.3.4. If 5, «, 1 are independent over QQ, then by a result of Oren
([37]) the cocycle defined by g is ergodic.

d= 2, o, = (ﬂ[o,ﬁ) -, Lo~ — )

a) o of bounded type

Theorem 2.3.12. If a is of bounded type, the cocycle @2 = (1,5 — 5, Ljo) —
) is regular.
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Proof. Recall that we constantly assume that g3,~, 5 — v are not in Za + Z.
The proof is done in three steps:

Step 1. E(Py) # {0}; indeed, this follows immediately from the proof of
Theorem applied to 5 ¢ Za + Z (see Lemma and Lemma [2.3.3).

Step 2. [ = ~y; then our cocycle is regular by Theorem [2.3.11

Step 3. 0 < 8 <y < 1. Now, we claim that for each a,b € R the cocycle
a(Lj,p) — B) + b(Ljo) — 7) is regular. Indeed, we have already noticed this
property to hold if a or b is equal to zero. When a # 0 # b, we obtain
a step cocycle with 3 effective discontinuities 0,3 and . In that case we
apply Theorem (see the application to cocycles with 3 discontinuities,
example 1 after the proof) to conclude that our scalar cocycle has a non-zero
finite essential value and hence is regular. The claim immediately follows.
The regularity of ® is now an immediate consequence of Corollary [

Remark 2.3.5. Notice that we can apply other previous results to obtain an-
other, more complex proof of Theorem [2.3.12, which however can be applied
in other situations. Indeed, since « of bounded type, we apply Theorem [2.3.5
to conclude that the cocycle ® is regular whenever (3,7, v, 1 are independent
over Q.

Otherwise, there are integers 7, s, v, w not all equal to zero such that

rB 4+ sy +va+w = 0.

The case when [ or v belongs to Za + Z is excluded (cf. Remark .

1) Assume that 8,7 € Qo+ Q and 8 — v ¢ Qa + Q.

If s or v # 0, say s # 0 then v = =23 — 2a — 2. We apply Lemma 2.2.3]
for 1 = 18+ %a+ 9, By = =B+ Za+ —Yand f3 = =2+ o+ =2
and obtain a subsequence (g,, ) along which the wsd property is satisfied for
the discontinuities of ®5. Then Theorem [2.3.8| applies.

2) Suppose s = 0 and v ¢ Qa + Q, f € Qa + Q. It is enough to
show that d; = 2 in Theorem [2.3.4, By the proof of that theorem applied to
B ¢ Za+7Z, in view of Lemmal[2.2.4] we obtain M : R? — R? arational change
of coordinates such that M®, = (¢!, 9?) has (1,0) as its essential value. On
the other hand, by Lemma (taking into account that det M # 0) and
remembering that under our assumption 3 and ~ are independent over Q,
we obtain that 3(y") ¢ Za + Z, i = 1,2. Therefore, again by Lemma ,
L(B(y") # {0}, hence by the proof of Theorem [2.3.4, d; = 2.

3) The missing case § — v € Qa + Q (see the assumption in 1) and the
separate case 3,7 € Qo+ Q) are covered by Lemma and an application
of Theorem 2.3.8
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b) a of non bounded type

For d = 2 and a not of bounded type the question of construction of a
non regular step function is not solved and the purpose of this paragraph is
to present some observations.

From Lemma and Proposition 2.3.7, we know that £(®) does not
reduce to {0}. By Corollary , the regularity of the cocycle is equivalent
to the regularity of the one dimensional cocycles with 3 discontinuities: ¢ =
a(lp, — B) — b(1p,) — ), where a, b are arbitrary real numbers. Since we
know already that regularity holds for b = 0, it suffices to consider ¢ =
alp,gy — lpq) — (af — ). It is interesting to understand the particular case
~v = (3, with £ a positive integer. We will give some partial results on this
cocycle and ask questions.

First of all, there are special situations where one can conclude that the
cocycle ¢ = {1 gy — Ljg,¢p) is a coboundary (we assume that /5 < 1). We use
the following result of Guenais and Parreau (with the notation of Section 77,
in particular Tz = = + «):

Theorem 2.3.13. ([16l], Theorem 2) Let ¢ be a step function on T with
integral 0 and jumps —s; at distinct points (3;,0 < j <m), m > 1, and let
t € T. Suppose that there is a partition P of {0,...,m} such that for every
JeP and Bye{p;: je J}:

(i) Yjessj €L; .

(i) for every j € J, there is a sequence of integers (b)), such that

, b TP
B =B+ blg.a mod 1, with ) LAl <400 and > ||D blsi|| < +oo;
n>0 n>0 An+1 n>0'"jer
(7ii) there is an integer k' such that t = K'a — Y jep t; where
tr=B1Y si+ {Z b{;sj]qna mod 1.
jed n>0\tjet
Then there is a measurable function f of modulus 1 solution of
¥ = 2 f o T/ f. (2.3.15)

Conversely, when Y ;c;s; & Z for every proper non empty subset J of
{0,..,m}, these conditions are necessary for the ezistence of a solution of

2313

Take ¢ = (195 — Lp,g. With the previous notation, the discontinuities
are at fp = 0,01 = 5,02 = v = {6 (m = 2) with jumps ¢ — 1, —¢,1 re-
spectively and the partition P is the trivial partition with the single atom
J =1{0,1,2}. We also have 3; =0, >;c;5; = 0.
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Suppose that the parameter § has an expansion in base (g,a) (Ostrowski
expansion, see [18]):

B=> bug,a mod1, with > —— 10l < 400, b, € Z. (2.3.16)

n>0 n>0 dn+1

We can take b0 = 0,b! = b, b2 = (b, so that Z]Eijs] =/(b, — b, = 0. In

view of Theorem [2.3.13 m 3} for every real s, the multiplicative equation e*™s¥ =

f oT/f has a measurable solution f : T — S'. By using Theorem 6.2 in

[35], we conclude that ¢ is a measurable coboundary. Let us mention that
another proof based on the tightness of the cocycle (¢,,) can also be given.

Conversely, if ¢ is a measurable coboundary, then ¢*™*% = f o T/f, for

s real has a measurable solution, and this implies that $ has the expansion

given by ([2.3.16]).

Therefore we obtain:

Proposition 2.3.14. If ¢ is a positive integer with {5 < 1, then the cocycle
@ = Ll — Liogp) is a coboundary if and only if 3 satisfies .

Question: A question is to know if the cocycle ¢ = {1jgg —
Ljos) is regular or not, when 3 has an expansion 8 = 3,5buq,0
mod 1, with lim,, a“’"' =0and ool — 4 0. (Notice that by Theorem

n>0 ¢ bl
2.3.13|it cannot be a coboundary)

d= 3, &3 = (Ljo 3 — 5, Ljor) — 7, Los) — 9)

We will consider a of non bounded type and show that for some choice of
B,7,0 we can obtain a non regular cocycles (cf. [7]). For r € R, we denote
by p, the translation x — x + r mod 1.

Theorem 2.3.15. Assume that Tx = x + « on the circle T. If a is not of
bounded type, then there exists [ such that ¢ = Ly — Ljog) © p s a non
reqular cocycle for r in a set of full Lebesgue measure.

Proof. By a result of Merril ([34], Theorem 2.5 therein, see also Theorem
above from [16]), we know that, if 3 satisfies (2.3.16), then there is
an uncountable set of real numbers s (so containing irrational numbers) such
that we can solve the following quasi-coboundary multiplicative equation in
(s,3): for s € R there exist |¢] = 1 and a measurable function f : T — S!
such that e*™0.6) = cf/foT.

For this choice of 3 and s (s is irrational), e> ({06 ~10.5)°) is a multi-
plicative coboundary for every r.
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For the integer valued cocycle v, = 1j93) — 1j0,3) © pr We obviously have
E(¢,) C Z. On the other hand, si.(z) = n(z) + F(z) — F(z + «), with
F: X — Rand n(-) : X — Z measurable. Therefore ¢,(x) = s~ 'n(z) +
sT'F(z) — s7'F(x + «). Tt follows that the group of finite essential values
over T of the cocycle 9, is also included in the group %Z and therefore
E(Yy) C {0, 00}

This implies that 1), is either non regular or a coboundary (cf. Subsection
2.1.1). The latter case cannot occur for a set of values of r of positive
measure, because otherwise, by Proposition below, 1jpg — B is an
additive coboundary up to some additive constant ¢ (and necessarily ¢ = 0,
since the cocycle defined by 1 gy — 3 is recurrent). But this would imply
that 2™ is an eigenvalue of the rotation by «, a contradiction.

Therefore the cocycle 1jg gy — L) © pr is non regular for a.e. r € R. [

Proposition 2.3.16. Assume that K is a compact connected Abelian
(monothetic) group. Let T be an ergodic rotation on K. Let ¢ : K — R
be a cocycle. Assume moreover, than on a set of g € K of positive Haar
measure we can find a measurable function ¢, : K — R such that

p—plg+:) =tvgoT =ty (2.3.17)

Then ¢ is an additive quasi-coboundary, i.e. o = b+ho T —h, for a measurable
function h : K — R and a constant b € R.

Proof. For g € K satisfying (2.3.17) and arbitrary s € R we have:

e?m'scp(a:) 627ris¢g (T'z)

e2misp(g+z) - e2misg(z)

According to Proposition 3 in [32], for every s there exist \; with |As| =1
and a measurable function (, : X — S' such that > = )\, - (, 0 T/(,. By
Theorem 6.2 in [35], the result follows. O

Remark 2.3.6. 1) If § satisfies (2.3.16]), then either 1}y 5 — 1o ) © pr is non
regular or is a coboundary. We have shown that the latter case can occur
only for r in a set of zero measure. A problem is to explicit values of r for
which 1jo g — L) © p, is not a coboundary.

2) If 1/)5’% =L — Lpg o p1 is non regular, then 1/)[1_67%) = 1[0,%—/3) —
Lo 1o p1 is regular. Indeed the sum of these two Cocyczles is Ipg 1y — 1.
It can be easily shown that this latter cocycle has non trivial quasi periods.
The non regularity of Qﬂ@,% implies that (ww?%))qn, the cocycle at times g,,

tends to 0 in probability, so that 11y has non trivial quasi periods.
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Corollary 2.3.17. There are values of the parameters (3,7,0) such that

®3 = (L) = B, Ljoy) =7 Loy = 9)
s mon reqular.

Proof. Suppose that 0 < f < v < 0 and 6 =  + 7. By applying
the map (y1,¥2,¥3) — Y1 + Y2 — y3, we obtain the 1-dimensional cocycle
Lj0,5)(+) = Ljo,8)(+ + ), which is non regular by Theorem [2.3.15| for a value of

the parameter [ satisfying (2.3.16)) and almost all 7. Lemma implies
the non regularity of @3 for these values of the parameters. ]

Note that for d = 2, i.e. for two parameters (3, ), an attempt to obtain a
non regular cocycle is to take v = 23 and the linear combination: 2(1y g)(-) —
B)— (L2 () —28) = Lpg)(-) —Lps(-+5). We obtain the cocycle discussed
above (cf. Proposition and the question previously mentioned above
is whether there are values of § such that it is non regular.

2.4 Application to affine cocycles

We consider now the affine cocycle
1
Wara(x) 1= (6(2), 0lx + Br), - (o + Bu), where ¥(x) = {r} — o

2.4.1 Reduction to a step function

By a straightforward calculation we have the following formula for the cocycle
(R

Vg, () = e + q”(q”Z_l)a — q—z" + M(z), (2.4.1)

where M is a (non 1-periodic) function with values in Z. It follows that, for
s e0,1),

Vg, ({z + B}) = (2.4.2)
:{qu<x>+qnﬁ+(M(x+ﬁ>—M(x>) if z+p8<1,
Vg () + (@nB — qn) + (M({z + B}) — M(z)) if 1<x+3<2

We will reduce the cocycle W41 to step cocycles using the group of finite
essential values.

Theorem 2.4.1. The group E(Vyi1) includes ANgyq = {(t,...,t) : t € R},
the diagonal subgroup of R+,
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Proof. Denote S;(z) = ps,(z) = x + ; mod 1. Suppose that {g,, 0} = ¢,
with ¢; € [0,1) for i = 1,...,d, and consider the measures

v = (¥ X oSy X ... x oSy, (), k=>1.

Since

Vo € [0,1), g, (1) = by, (4)] < 2V() =2

and [ dp = 0, we have that Tm(¢) x ¢ 0 .Sy x ... x 10 Sy),, C[-2, 2]d+L
so that vy is concentrated on [—2,2]9+1,

It follows that we can select a subsequence of (1) (still denoted (vy))
which converges to a probability measure v (which is concentrated on
[—2,2]41). We will show in what kind of a subset of R the support
of v is included. Consider the image of the measure v via

F:R¥™ S RY F(xg,...,1q) = (21 — 2o, ..., Tq — 20).
In view of (2.4.2)), we obtain

Fo(xpoSix...x1oSa)g, (€)= ({gn b1} +Mi(2), ... {gn.Sa} + Ma(2))

with M;(x) € Z, whence F,y, is the measure concentrated on
({anﬁ1}> ERRS) {anﬁd}) + Zd'

Since v, — v weakly, F,vy — F.v (because all these measures are con-
centrated on a bounded subset of R¥*1). As {g,, 3;} — ¢, it follows that

suppv C {(zo,...,2q9) ER™ : ; —xg=ci+ ki, ki €Z, i=1,...,d}.

The set on the right hand side of this inclusion is equal to the union of sets
of the form {(z, z—(c1+k1), ..., t—(ca+kq) : * € R}, hence of countably many
lines parallel to the diagonal Ay, ;. Moreover, the support of v is uncountable
(because one dimensional projections of v are absolutely continuous measures
- see [30]), whence it must be uncountable on one of these lines. In view of
Proposition 2.1.4] suppv C (V441) and since £(V441) is a group, we have
suppv — suppv C E(V4y1). However, the set Agyq N (suppr — suppv) is
uncountable, so because £(V4y1) is closed, we must have Ay C E(Vyiq)
and the proof is complete. O

Corollary 2.4.2. (1,10 54,...,108y) is ergodic whenever the set of accu-
mulation points of ({quBi}, ..., {qnBa}) is dense in T9.
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Proof. From the proof of Proposition it follows that with every accu-
mulation point (¢i,...,¢q) of ({qnB1}, ..., {qnBa}) we obtain a line {(z,z —
(c14+ k1), ....x — (cq + kq) : © € R} (and the smallest subgroup in which the
line is included) which is included in the group of essential values. Since the
set of accumulation points is dense and £(W,, 1) is closed, it follows that the
only possibility is that £(¥yy1) = R which is equivalent to the fact that
W, is ergodic. [

By Lemma the study of W4, reduces to that of the quotient cocycle
Va1 +Agpr 0 T — RTY/Ay . Using the epimorphism R4 S (yo, ..., ya) —
(y1 — Yo, -y Ya — yo) € R? (whose kernel is equal to Agy1), the quotient is
given by the cocycle

Py(r) = (1[0,1—5j) — 1+ 8))j=1,..a- (2.4.3)

2.4.2 On the regularity of ¥y,1, d =1,2, 3.

1) d=1,8, = ($(2),¥(z + 5))

Applying Theorem and the equation [2.4.3| we can reduce the cocycle
U, to the quotient cocycle (Vg + Ag) (x) = Ijo1-5 — 1 4+ 3. We conclude
using Theorem that W, is regular over any irrational rotation 7.

2) d = 2,05 = (b(x), b(z + B), b(x +7))

As above we reduce the cocycle W3 to the quotient cocycle
(U3 + As) (z) = (Ljog-p — 1+ B,1p1-9) — 1 + 7). Recall that we have
seen in subsection that for o with bounded partial quotients W3+ Aj is
regular and therefore the affine cocycle is also regular when « has bounded
partial quotients.

3) d =3,y = (Y(x),Y(x+5),d(x+7),¢(x+9))

Theorem 2.4.3. There are values of the parameters (f,7,6) for which the
cocycle is non reqular.

Proof. After reduction by Ay, the result follows from Corollary 2.3.17, O

2.4.3 Ergodicity is generic

We consider, as before, the cocycle ¢)(z) = {z} — ; and let Sz(z) = 2+ 3 be
the rotation by g € [0,1) on T.

Proposition 2.4.4. The set {(B1,...,84) € T? : (¥,¢ o Spy,...,% o
Sgs,)) is ergodic} is residual.
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Proof. Using Corollary , we only need to show that the set of (81, ..., 54)
for which the set of accumulation points of ({g.01}, ..., {g.0a})n>1 is dense
in TY, is residual (i.e. it includes a dense G5 subset).
We take ¢ > 0 | ¢,...,¢q € [0,1) and consider the sets Ay =
le(cl, oo cay€) = Uy Anler, .., cqy€), where
An = An(cb ..., Cy, E)

={(B1,--,Ba) €T |lguB — a1l <&, |@uBs — call < €}

Clearly Ay is open and also dense. Fix 0 < g, — 0. Then the set

_8

ﬂ AVN(Cla"'acdﬂgf)
¢>1 N=1

is a dense Gs. Moreover this set equals

{(51’ s 76d) € Td : (Elan) ({an/Bl}7 sy {anﬁd}) — (Clv s ’Cd)}a

so the latter set is also a dense GG5. Therefore the set
N N N Awler,- . )

is a dense G and the proof is complete. m

Now, we show that the multiple ergodicity problem has a positive answer
for a.a. choices of (f1,...,84). We will need the following classical lemma of
Rajchman.

Lemma 2.4.5. Let (X,B,u) be a probability space, f, : X — R such
that f, € L*(X,B,n), |Ifall < C, and f,Lf, whenever n # m. Then
%22:1 fr = 0 a.e.

Proof. It follows from the assumptions that >%_; [ SN RIE <
>N % < +00; hence, limy ﬁ Zkle fr=0a.e.
For n > 1, let L, := [\/n]. We have L2 <n < (L, + 1)* and

1 < "
’*ka:\ < §|ka\ +2C— — 0,a.e
k=1 n k=1

[]

Proposition 2.4.6. For every irrational rotation Tx = x+«a on T, we have

pH (B, ..., Ba) € T (Y, 08s,,...,908s,)) is T-ergodic} = 1.
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Proof. By Corollary , all we need to show is that the set of (1, ..., 34)
for which the set of accumulation points of ({g.01}, ..., {qn0Ba})n>1 is dense
in T¢, is a set of full measure. We will show more: the set of such d-tuples
for which ({g.f1}, -, {@nBa})n>1 is uniformly distributed (mod 1) in T¢ is
of full measure.

For almost all (fy,. .., B4), the sequence (¢,01,. .., gnBa)n>1 is uniformly
distributed (mod 1). Indeed, by Weyl’s criterium of equidistribution (see e.g.
[?]) it suffices to show that for almost all (34, ..., 34) in T¢, for any nontrivial
character y of T¢, the Cesaro averages of the sequence (x(¢.51, - - - @uB4))n>1
tend to zero.

We have x(qnf1, .-, qB4) = exp(2mi(s1¢afr + ... + Saqnfa)) for in-
tegers si,...,84. To conclude, we apply Lemma to fu(x1,...,2q) =
exp(2mi(qns121 + - - . + quSaTa)). O






CHAPTER 3

Markov quasi-similarity

3.1 Markov quasi-factors of quasi-discrete spectrum
automorphisms

For each k € N, we denote by Rx[X] the space of all real polynomials (of one
variable) of degree less than or equal to k.

We will need the following characterization of quasi-eigenfunctions ob-
tained by E. Lesigne in [33].

Theorem 3.1.1. If T € Aut(X,B,un) is totally ergodic then the following
two conditions are equivalent:

1 fe(B(T)*.
2. For p-a.a. v € X, for each P € Ri[X] and each continuous periodic
function ® on R, we have
1 N-1

lim N T;) O(P(n))f(IT"x) =0.

N—+o00

Remark 3.1.1. As a matter of fact, the proof of the above theorem from
[33] shows that (2) implies (1) without the assumption of total ergodicity of
T.

The characterization given in Theorem [3.1.1] will allow us to generalize

Theorem [1.9.5] (see Theorem below).

95
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Lemma 3.1.2. Assume that T € Aut(X,B,u). Assume moreover that
span U2y Ei(T) = L*(X, B, u). If A C B is a factor such that T4 is totally
ergodic then T |4 has quasi-discrete spectrum.

Proof. 1t T| 4 does not have quasi-discrete spectrum then there exists f €
L*(A) such that f € Ey(T|4)* for all k> 0. Since T|4 is totally ergodic, it
follows from Theorem [3.1.1] that

Jim s X ¢(P)F(1") =0

for all k, P € Ri[X] and ®. In view of Remark [3.1.1} f L spanU;S, Ei(T).
[

Lemma 3.1.3. If T is totally ergodic, S is Markov quasi-factor of it, then
S is also totally ergodic.

Proof. The total ergodicity of T is equivalent to the non-existence of non-
trivial eigenvalues of Ur of finite order. By Lemma S cannot have such
eigenvalues neither, therefore it is totally ergodic. O]

Theorem 3.1.4. Markov quasi-factor of an automorphism with quasi-
discrete spectrum has quasi-discrete spectrum.

Proof. Let S be a Markov quasi-factor of an automorphism 7" which has
quasi-discrete spectrum. By Theorem S is a (genuine) factor of (1" x

T x ...,p) for some p € JS(T). By Remark

L*(X x X x...,p)=span|JE(T xT x ...,p).

>0

We can now apply Lemma [3.1.2] since S is totally ergodic by Lemma [3.1.3]
O



3.2. Mixing Markov quasi-similar automorphisms which are not weakly
isomorphic o7

3.2 Mixing Markov quasi-similar automorphisms which

are not weakly isomorphic

Let us fix T' = T, a standard Gaussian automorphism which is GAG and
assume additionally

1
¢ 13(s',0) ; (3.2.1)
T, is a mixing GAG. (3.2.2)

Firstly, we will describe how the two properties of o can be achieved. We
start with 7}, an arbitrary mixing GAG (for example, take any simple spec-
trum mixing Gaussian automorphism, [25]). Then we translate the spectral
measure 7 so that 1 belongs to the topological support of the translation
and then symmetrize the measure to obtain a GAG measure 0, (see Propos-
ition 11 in [25]) with 1 in the topological support. We have, T, is mixing
because o is still a Rajchman measure. Since 1 is in the support of oy, in
view of Lemma 5 [24], there is 0 # h € #, so that h is not an L*(S', ay)-
coboundary. Finally, take ¢ = |h|?0y < o;. Then 1 is not an L*(S',0)-
coboundary, which, in view of Remark yields (3.2.1)). Since ¢ < o7,
T, is both GAG and mixing.

The process representation of 7' is denoted by (P,)nez and the Gaussian
space H, =span{P,: n € Z}. Set [ = F.

It follows from that T2~y is ergodic. In fact it is weakly mixing,
so mixing (see Corollary [1.9.7, Remark [1.9.4). As in [24], fix v which is a
transcendental complex number of modulus 1 and define the unitary operator
W L*(S',0) — L3(S', o) by setting (W3)(z) = g(2)j(z), where g(z) = a on
the upper half of the circle and ¢g(z) = @ otherwise. This isometry extends
in a unique way to S € C9(T).

We will consider now a class of automorphisms which are group extensions
of T given by cocycles taking values in (S!)Z:

T“ai*luio’ilw“ = T..7exp(27rif05i*1 ),exp(27ifoS%0),exp(2mifoSi),...” (323)

In particular, we will show that automorphisms 7" _; 012, and T' _1923 .
are Markov quasi-similar but not weakly mixing.

32This is equivalent to saying that 1 is not an L?*(S*, o)-coboundary, or that Py is not
a Gaussian coboundary.



58 3. Markov quasi-similarity

3.2.1 Coalescence of two-sided cocycle extensions, absence of
weak isomorphism

Remark 3.2.1. Assume that W : (SY)% — (S')? is a continuous homo-
morphism. Then W = (..., W_y, Wy, W1, ...), where W; : (S1)Z — S! stands
for the composition proj; o W of W with the projection proj; on the i-th
coordinate. Moreover, W; is a character of (S')Z.

We recall that each character x of (S')Z is of the form

— T1,-5Tk —_ Sm1 mg
X = X ks X(eev 21,20, 215 22,0 ) = 2000 2

forri,m; € Z, 1<14,5<k.
It follows from [24] that we have the following: [

the automorphism (3.2.3)) is ergodic

(hence weakly mixing and even mixing)
for any sequence of integers (ix)rez,
provided that i) # i; whenever k # [.

(3.2.4)

Indeed, for no y # 1 we can solve the functional equation
X(...,exp(2mif o '), exp(27if o S©), exp(2mif 0 S"),...) = (/¢ o T.
Equivalently, we cannot solve the functional equation

exp(2mi(myf o S™ 4+ ...+ myf o S"))
= exp(2mif o S™)™ .. .exp(2mif o STR)™ = (/CoT

which via Proposition means that myf o S + ... 4+ myf o S is
not a coboundary, equivalently it is not a Gaussian coboundary. Indeed,
myf o St 4 ...+ myf o S is a Gaussian coboundary if and only if @
mpain + ...+ mpait = k(z)(1 — z) for some k € L*(S', o) and since the left
hand side above is constant different from zero, 1 is an L?(S', o)-coboundary
(P is a Gaussian coboundary) contradicting (3.2.1)).

Remark 3.2.2. The following has been proved in [24]: for all U € C9(T),
j € Hy,nq,...,ny,r € Z and pairwise distinct integers pq,...,p;

ifnifoSP 4+ - +nfoS"—foS oU=j—joT

(3.2.5)
then t =1 and n; = £1.

33 The ergodicity of T. i_1igsr,... also follows from the proof of , Proposition
the ergodicity of T,2~if and Remark

*Recall that f in the spectral model corresponds to the constant function 1, while S
acts by multiplication by g.
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We rewrite the above as

n1(g(2)" + -+ nu(g(2)” = (9(2))"u(z) = k(2)(1 - 2),

where u € 7, is of modulus 1 (and k € 7). If we put Q(2) = ny 2 +---+
nezm and 1(2) = Q(g(2)) — (g(2)) u(z) then

1) > [lQU)] -1 = [IQ(a)| = 1] for = €S

Suppose that t > 2 or t = 1 with |n;| # 1. Since « is transcendental, the
modulus of Q(a) cannot be equal to 1 [P Therefore, there is a constant
A > 0 such that |I(z)| > A. Consequently, the function - = k(2)/I(z) is in

oy, which contradicts ((3.2.1]).

Proposition 3.2.1. Assume that i = (iy)rez is a strictly increasing sequence
of integer numbers. If (ix)rez is an arithmetic sequence (progression) then
T; =T i \ig,. 15 coalescent, that is, each endomorphism commuting with

T is invertible.

Proof. Suppose that S is an endomorphism commuting with 7. In view of
(1.9.7) and (1.9.8)), there exist U € C9(T), ¢ : X, — (S")% measurable and

v: (SHZ — (SHZ a continuous algebraic epimorphism such that

vo/hoU =C(/CoT, (3.2.6)

where
Y =(...,exp(2mif o S ), exp(2mif 0 S©), exp(2mwif 0 S™),...).

The right hand side of (3.2.6)) is a function taking values in (S')Z such that
on the r-th coordinate we have

G/GoT,

where ¢ = ((r)rez. The left hand side of (3.2.6) is more complicated: it
is the multiplication of v o ¢ with (¢, o U), where ¢ = (¢,),ez and ¢, =

exp(2mif o S™). Now (see Remark [3.2.1)),

X, 5 (SHE 2 (ShE 2o st

—

Hence, in view of Remark each coordinate of the left hand side of
(13.2.6]) is of the form

projr o vop(x) =y, ()™ ... Py, ()™

35Indeed, |Q|*(a) = 1, and |Q|? is an integer coefficients polynomial of degree at least
one when t > 2, so « is algebraic, while when ¢ = 1, |Q|(«) = |n1| # 1.
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(for r € Z and the choice of ny,...,nyp1,...,p; depending on r.) Using
Proposition [1.9.6], we obtain

nifoSw +...4nfoSP —foS olU=4{—{l.0T

with some nq,...,n; € Z, ¢, € H,. By (3.2.5)), it follows that ¢t = 1 and
ny = £1. Therefore,

U((Zr)rez) = ((Z:E;))rez), (3.2.7)
where 7 : Z — 7Z and m, = £1 for r € Z, whence
myfoSix — foSrolU =4, —{0T.
Since S,U € CY9(T), it follows that
m,f oS~ — foU isa coboundary.
and for r # s we obtain that
myf o S~ —m f o S s also a coboundary. (3.2.8)

However, in view of (3.2.4), 1" ; , jo.j.... is ergodic for any choice of the
sequence (ji) of distinct integer numbers. Therefore, (3.2.8)) implies that

in(ry — ir = const and m, = const. (3.2.9)

By assumption, there exists b € Z \ {0} such that i; = iy + tb for each
t € Z, whence i1y, = iy +tb. By (3.2.9), irw) — tu = ir(0) — %. Therefore,

iﬁ(u) — 19 = iﬁ(u) — g+ 1y — 10 = Z'W(O) — 0+ 1, — 1 = W(O)b + ub.

On the other hand i (y) —i9 = 7(u)b. Therefore 7(u) = 7(0) +u which means
that 7 is a translation on Z. By (3.2.7), v is an automorphism, so finally S
is invertible.

O

Similar arguments to those above apply to show the following criterion
for the isomorphism of the skew products of the form 7;.

Proposition 3.2.2. Given two strictly increasing sequences i = (ig)pez and
J = (Jr)rez of integers, the two automorphisms T; and T; are isomorphic

if and only if there exist m € Z and a permutation m : Z — 7Z such that
Jnk) — ik =m for all k € Z.
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Absence of weak isomorphism of 7' 1912 and T _1923 .

,1,4,...

As an application, consider two extensions T3, i = (...,—1,0,1,2,...)
and 775, j=1(..,—1,0,2,3,...). They are not isomorphic. Indeed, otherwise
there exists m € Z and a permutation 7 : Z — Z such that jrg) = m +1ip =
m + k for all & € Z. Therefore, jr(_m+1) = 1, which is a contradiction.

On the other hand, it has been already noticed in Remark that
whenever an automorphism R is coalescent and R is weakly isomorphic to R’
then R is isomorphic to R'. By Proposition 3.2.1 T' _1012,.. is coalescent.

ey

It follows that T". 1012, and T _ 023, are not weakly isomorphic neither.

Remark 3.2.3. Note that not every ergodic automorphism 7" _; | ;4 . is
coalescent. For example, the non-invertible map

0
(z,2) = (SPx,..., 21, 20, %2, 23, 245 - . .)

is an element of the centralizer of " _¢_4_20123...-

IR Et]

3.2.2 Markov quasi-similarity of two-sided cocycle extensions

Let T be an ergodic automorphism of (X, B, u1). We take ¢ : X — S! so that
the group extension 7, is ergodic. Then assume that we can find S acting
on (X,B,p), SoT =ToS (that is, S € C(T)), such that if we set G = (S')%
and define

VX =G, la)=(..,0(S ), ap(ox), ©o(Sz), o(S%x),...)

then T}, is ergodic as well. Put now T} = T, and let us take a factor 15
of T; obtained by “forgetting” the first S'-coordinate. In other words, on
(X x (SH%, u ® mgiyz) we consider two automorphisms

0
Tl(l‘7§) = (TI, ceeyR-1 90(5_155)720 ’ 90(1'),2’1 ’ SD(Sx)a z2 " SO(SQZE)? e ')7

0
To(z,2) = (Tx,..., 21 (S 2), 20 - (), 21 - p(S%x), 25 - ©(S*2),...),

where z = (...,2_1,2(’)0,21,22,...). For n € 7Z define I, : X x (SH)Z —

X x (SY)Z by setting

0
n

[n(xvg) = (S Ly...y2n—1,%n, 2n+2, Zn+3 - - )
Then I, is measure-preserving and I,, o T} = T, o I,,. Therefore

UT1 (¢] U[n = U[n (¢] UT2 (3210)



62 3. Markov quasi-similarity

with Uy, being an isometry (which is not onto) and
Ul F(x,2) = /1 F(S*"x,...,zgn,...,go,z,zl,...)dz.
S

Denote by ly(Z) the subspace of [*(Z) of complex sequences T = (7, )nez
such that {n € Z : z,, # 0} is finite.

Proposition 3.2.3 ([13], Prop. 3.1). There exists a nonnegative sequence
a=(an)nez € *(Z) such that Y ,cz a, =1 and

for every & = () nez, € 1*(Z) if ax z € lo(Z) then T =0 . (3.2.11)

Let a= (a,)nez € 1*(Z) be a nonnegative sequence such that 3.5 a, =1
and (3.2.11)) holds. Let J : L*(X x (SY)%, up ® mgiyz) = L*(X x (S')%, n @
ms1yz) stand for the Markov operator defined by

J = ZCLntn.

neL

In view of (3.2.10), J intertwines Ur, and Usg,.

Denote by Fin = Z%2 = Z & Z & . .., which is naturally identified with
the dual of (S')Z. Let us consider the following two operations on Fin. For
A = (As)sez € Fin (only finitely many As # 0) we set

~ ~ A, if s<0
A= (AS)SGZ = As—l if s>1
0 if s=1

and given B = (By)sez € F'in such that By = 0 we put

~ ~ B, if s<0
B = (Bu)sez = { By if 5> 0.

Of course, N ~
A=A and B=B.
For A = (As)sez € Finand n € Z let

A+n=((A+n)s)sez,
where (A +n)s = A,_, for s € Z. We have

(A+ n)n+1 = Apirn=A =0. (3.2.12)

30 (@xT)p =0 AmTp_m.
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Assume that B = (Bs)sez € Fin and B, ;1 = 0; then the element

B —n is the unique element C' € Fin such that C'+n = B. (3.2.13)

Let ~ stand for the equivalence relation in F'in defined by A ~ Bift A = B+n
for some n € Z. Denote by Fing a fundamental domain for this relation.

Lemma 3.2.4 (cf. [13]). J has trivial kernel.
Proof. Each F € L*(X x (S')%, 1 ® mg1)z) can be written as

F(z,z) = 3 fa(2)A(2),

AeFin
where
A(2) = Hyezzs whenever A = (Ay)sez and fa € L*(X, p).
Note that 3 acpin | fallFe(x ) = HF\’%2(XX(SI)Z,u®m(S1)Z)' Since

Ur, (fa® A) (2,2) = (fa @ A) (In(x, 2)) = fa(S"2)(A + n)(2),

we have ~
JF(z,2) =Y. > anfa(S"z)(A+n)(2).
nez AeFin
By , (ﬁ + n)pe1 = 0, so by changing “the ”index”: substituting
A+n =: B and using (3.2.13) (from which it follows that A = B —n), we
obtain

JF(@,2)= Y > af5(S"0)Blz)= Y Fp(x)B(2),

BeFinn€Z,Bp+1=0 BeFin

where Fp(z) = > nez,Ba=0 tnf5—, (S"x). For every B € Fing and v € X
we define £8(x) = (€8(x))nez by setting

Cf fa=(S"x) if By =0

Therefore, for k € Z
Fpin(z) = > anf g, (")

TLGZ,(B+I€),L+1 =0

= Y e (S )

’VZEZ,B<7L,]C)+1:0

= Y anfl(8%0) = [ax (€5(S*a))Li.

nez
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Suppose that J(F) = 0. It follows that for all £ € Z and B € Fing we have
[a * (£B(Skx)>]k = Fp(z) = 0 for p-a.e. z € X, whence a.s. we also have
(@ * (fB(x))]k = (. Letting k run through Z, we obtain that a = ({"B(a:)) =0
for p-a.e. z € X. On the other hand, £8(x) € [*(Z) for almost every z € X.

In view of (3.2.11)), £8(x) = 0 for every B € Fing and for a.e. z € X, hence
Jfz = 0 for every A € Fin with Ay = 0. It follows that f4 = 0 for every

A € Fin, consequently F' = 0. O
Lemma 3.2.5 (cf. [13]). J* has trivial kernel.
Proof. Let
Fz,z)= Y, fa(2)A(2).
A€Fin
Then

Ur (fa® A) (2,2) = fa(S™"2) /S Al sz 2" 2 de,

It follows that

Ui (a© A)(o2) = { SAET0A=0E) T e 20

It follows that

P

JF@z) = Y Y aufa(S A n(z)

A€EFin n€Z, Api1=0

= > 2 anfp, (9"0)B(2)

BeFinn€eZ

= Z Z aanJrn(S’”x)ﬁ(g).

A€Fin,A1=0n€Z

Furthermore,

PPz = Y Y Y aufai(ST2)A k()

A€Fing k€Z,(A—k)1=0 neZ

= > > [ (¢NST)lkA - k()
A€eFing keZ,(A—k)1=0
where (*(2) = (({'(x))iez is given by ((z) = fai(S'z).

Suppose that J*(F) = 0. It follows that [a*(4(S7%z)]; = 0 for every A €
Fing and k € Z with Ay, = 0 and for a.e. x € X. Hence ax (CA(x)) € ly(Z)
for p-a.e. z € X (the only possibly non-zero terms of the convolved sequence
have indices belonging to {s € Z : (A — 1), # 0}). Since ¢4(z) € (*(Z), in
view of (3.2.11)), ¢*(z) = 0 for every A € Fing and for p-a.e. z € X. Thus
fa =0 forall A€ Fin and consequently F' = 0. n
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Markov quasi-similarity of 7' _1912.. and T _1923. .

,1,4,...

We apply results of this subsection to 7" a mixing GAG, ¢ = exp(2mif)
and S coming form extension of unitary operator W given by transcend-
ental . By Lemmas [3.2.4] and [3.2.5] there exists an operator with dense
range and trivial kernel intertwining the Koopman operators associated to
T —1,0,1,2,... and T..,—1,0,2,3,...~ It follows that T__7_17071727._ and T_.7_17072737._. are

aeey

Markov quasi-similar.

Finally, we obtain following theorem

Theorem 3.2.6. The automorphismsT  _1012,.. andT  _1023 . are mixing

s 1,4,...

and Markov quasi-similar but are not weakly isomorphic.

Proof. By assumption (3.2.2)), T is mixing. In view of (3.2.4)), both its group
extensions 7' _1 01,2, and T’ _j 023, are ergodic, hence they are also mix-

ing. Moreover, it was shown that they are Markov quasi-similar but not
weakly isomorphic. O

Remark 3.2.4. Recalling that a Gaussian mixing automorphism is mixing
of all orders, from the result of Rudolph about multiple mixing of isomet-
ric extensions (see [44]), it follows that the automorphisms 7" _; ;2. . and
T _1023,.. are also mixing of all orders.

ceey

Remark 3.2.5. In the beginning of the section, the measure o was chosen
to satisfy and . Here is another way of specifying it. For a
mixing GAG T, let 0 = 1 xn E|.Then T = 1T, is also both mixing and
GAG (the latter is unpublished result of F. Parreau). Since the Fourier coef-
ficients of o are non-negative, T.2xip, has countable Lebesgue spectrum in
the orthocomplement of L*(X,, u,) ® 1 (see Corollary 4 in [24]). Hence P,
is not a Gaussian coboundary and the conditions and hold.
Moreover, [|(Po)nllZ2(x, ) grows linearly with |n| (recalling that (Fy), = P,
(Po)nt1 = (Po)n + Po o T™ for all n € Z). Therefore, using the same argu-
ments as in [48, Lemma 4.2], we obtain that the automorphisms 7"__1 912, .
and T' 1023, in Theorem have countable Lebesgue spectrum in the
orthocomplement of L*(X,, ity) @ 1.

"By nn we mean the convolution of the measure 1 with itself, i.e. [g, f(2)dn*n(z) =

Jor Jor fow)dn(v)dn(w).
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