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Introduction v

0.1 Introduction
0.1.1 General notions: automorphism, Koopman operator, iso-

morphism, factor
By a dynamical system we mean a quadruple (X,B, µ, T ), where (X,B, µ) is a
probability standard Borel space and T is a bimeasurable (T−1B = TB = B)
bijection of X which is measure-preserving (µ(A) = µ(T−1A) = µ(TA) for
each A ∈ B). Then T is called an automorphism of (X,B, µ) and we will often
write T : (X,B, µ)→ (X,B, µ). By Aut(X,B, µ) we denote the group of all
automorphisms of (X,B, µ). Each T ∈ Aut(X,B, µ) determines a unitary
operator UT (called the Koopman operator associated to T ) of L2(X,B, µ) :
UT (f) = f ◦ T for each f ∈ L2(X,B, µ).

In order to classify dynamical systems, we usually use metric isomorphism
(the measure-theoretic isomorphism). Recall that Ti ∈ Aut(Xi,Bi, µi), i =
1, 2, are said to be metrically isomorphic if there exists an isomorphism S :
(X1,B1, µ1) → (X2,B2, µ2) (of probability spaces) such that S ◦ T1 = T2 ◦
S. If S is only assumed to be (a.e.) surjective, measurable and “measure-
preserving” then S is called a homomorphism and T2 is called a factor of
T1.

0.1.2 Equivalence notions and relations between them: metric,
weak and spectral isomorphism, Markov quasi-similarity

It follows that measure-theoretic isomorphism implies spectral equivalence
(isomorphism) of the corresponding unitary operators; indeed, US−1 :
L2(X1,B1, µ1) → L2(X2,B2, µ2), US−1f = f ◦ S−1 for f ∈ L2(X1,B1, µ1)
settles a unitary equivalence of UT1 and UT2 . It is a classical fact that
the converse does not hold, see [4] for historically one of the first relevant
examples1. Other classical examples of spectrally isomorphic and metric-
ally non-isomorphic dynamical systems arise when we consider the class of
Bernoulli shifts: all of them are spectrally isomorphic while the entropy clas-
sify them measure-theoretically (see [38]).

We now present two other concepts of equivalence of dynamical systems
situated between spectral isomorphism and measure-theoretic isomorph-

1These are examples as in (0.1.2) below. If we take the automorphism T defined in
(0.1.2) and consider T̃ : (x, y) 7→ (x+α, 2x+y) then T and T̃ are spectrally isomorphic but
are not metrically isomorphic. It is a particular case of spectral isomorphism in the class
of quasi-discrete spectrum automorphisms considered in Chapter 3: two automorphisms
with quasi-discrete spectrum are spectrally isomorphic if and only if they have the same
discrete spectrum.
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ism. In [47], Sinai introduced the notion of weak isomorphism. Two
automorphisms Ti ∈ Aut(Xi,Bi, µi), i = 1, 2, are said to be weakly iso-
morphic if there exist homomorphisms S1 : (X1,B1, µ1) → (X2,B2, µ2) and
S2 : (X2,B2, µ2)→ (X1,B1, µ1) such that S1 ◦T1 = T2 ◦S1, S2 ◦T2 = T1 ◦S2,
i.e. T1 and T2 are factors of each other. Clearly, metric isomorphism implies
weak isomorphism while the converse does not hold; for relevant examples,
see e.g. [23], [42], [43], [49]. It is already shown in [47] that weak isomorphism
implies spectral isomorphism2.

In order to introduce the fourth concept of equivalence of automorphisms,
first, recall that a linear contraction

Φ : L2(X1,B1, µ1)→ L2(X2,B2, µ2)

is called a Markov operator if Φ1 = 1 = Φ∗1 and Φ “preserves” the cone of
non-negative functions (Φf > 0 whenever 0 6 f ∈ L2(X1,B1, µ1)).

In [50], Vershik introduced a new concept for classification of dynamical
systems by considering the notion of Markov quasi-similarity: two auto-
morphisms Ti ∈ Aut(Xi,Bi, µi), i = 1, 2, are called Markov quasi-similar
(MQS) if there are Markov operators

Φ : L2(X1,B1, µ1)→ L2(X2,B2, µ2), Ψ : L2(X2,B2, µ2)→ L2(X1,B1, µ1)

both with dense ranges, satisfying the intertwining conditions3

Φ ◦ UT1 = UT2 ◦ Φ, Ψ ◦ UT2 = UT1 ◦Ψ.

Clearly, each Koopman operator is also Markov but not vice-versa. If
however, a Markov operator Φ intertwinning T1 and T2 is unitary, then it is
Koopman, i.e. Φ = US−1 , where S settles an isomorphism of T1 and T2 (see
e.g. [29], [50]). It is easy to see that weak isomorphism implies Markov quasi-
similarity (indeed, U−1

S1 , U
−1
S2 yield a Markov quasi-similarity). Moreover,

Markov quasi-similarity implies spectral isomorphism, see e.g. [13]4.
The relations between the four notions of equivalence can be now sum-

marized as follows:
2The converse again is false: the automorphisms T and T̃ mentioned in footnote 1 are

spectrally isomorphic but are not weakly isomorphic. In fact, weak isomorphism implies
isomorphism in the class of quasi-discrete spectrum automorphisms (see Remark 1.6.1 and
Theorem 1.9.4).

3Similarly to the notion of factor, if only Φ above exists then one says that T2 is a
Markov quasi-factor (MQF) of T1. Recall that an MQF of an ergodic T is ergodic ([13]).

4It is also noted in [13] that T1 = T × B, where T is an irrational rotation, B a
Bernoulli automorphism and T defined in (0.1.2) are spectrally isomorphic but are not
Markov quasi-similar.
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metric (r1)−−→ weak (r2)−−→ MQS (r3)−−→ spectral
isomorphism isomorphism isomorphism

0.1.3 Vershik’s question on Markov quasi-similarity. Markov
quasi-factors of quasi-discrete spectrum automorphisms

We have already noticed that (r1) and (r3) cannot be reversed and it was
one of main questions by Vershik in [50] whether (r2) can be reversed. The
negative answer to this question was given recently in [13]. The construction
in [13] is given in the class of so called compact Abelian group extensions of
(ergodic) rotations. In connection with it two natural questions arise.

First of all, the examples from [13] are not weakly mixing, so one can
ask whether the negative answer to Vershik’s question can be obtained in
a class of transformations with better mixing properties. The second group
of questions arises when we think about finding simpler (or more “natural”)
examples of MQS automorphisms which are not weakly isomorphic. Such
examples, of course, cannot be found in the class of discrete spectrum auto-
morphisms (ergodic rotations) as here already spectral isomorphism and met-
ric isomorphism coincide5 but the problem seems to be completely open in
the class of automorphisms with quasi-discrete spectrum6 (the latter class of
automorphisms was introduced by Abramov in [2]). To handle such a prob-
lem, it seems to be natural, first, to understand Markov quasi-factors of an
automorphism.

We will not really deal with the latter problem in the thesis, although
we will notice7 in Chapter 3 (see Theorem 3.1.4) that Markov quasi-factors
of quasi-discrete spectrum automorphism have quasi-discrete spectrum. The
theorem is a generalization of a classical result by Hahn and Parry [17] saying
that every factor of an automorphism with quasi-discrete spectrum also has
quasi-discrete spectrum. The problem of Markov quasi-factors will be rather
a motivation for us to see some further relations with the theory of joinings
and the theory of ergodicity of affine cocycles.

5This is the classical Halmos-von Neumann Theorem, see e.g. [11].
6 For the definition, see Section 1.9.2.
7The result will be a consequence of the proof of the theorem by E. Lesigne [33] char-

acterizing quasi-discrete spectrum of a given order.
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0.1.4 Joinings and Markov quasi-factors
In order to see a relationship of MQS with the theory of joinings, notice that
each Markov operator

Φ : L2(X1,B1, µ1)→ L2(X2,B2, µ2), Φ ◦ UT1 = UT2 ◦ Φ

via the formula ∫
B2

Φ(1B1 ) dµ2 =
∫
X1×X2

1B1 ⊗ 1B2 dρ (0.1.1)

determines a probability measure ρ on (X1 ×X2,B1 ⊗ B2) such that:

(i) its marginals on X1, X2 are µ1 and µ2 respectively,

(ii) ρ is T1 × T2-invariant

(see e.g. [15]).
Each measure satisfying (i) and (ii) is called a joining of T1 and T2. In fact,

there is a natural correspondence between Markov intertwining operators
and joinings (given by (0.1.1)). Hence, MQS requires the existence of special
joinings between two dynamical systems. To see deeper relations, recall that
given Ti ∈ Aut(Xi,Bi, µi), i > 1, by a joining of all these automorphisms
one means a probability measure ρ on (X1 ×X2 × . . . ,B1 ⊗ B2 ⊗ . . .) which
is T1×T2× . . .-invariant and has all one-dimensional marginals “correct” (as
in (i)). Note that each joining ρ yields a new automorphism T1 × T2 × . . . ∈
Aut(X1 × X2 × . . . ,B1 ⊗ B2 ⊗ . . . , ρ). When all of Ti are equal to T , one
speaks about infinite self-joinings of T .

Here is the main result relating joinings and the theory of MQF ([13], see
also footnote 3):

Theorem 0.1.1. Let T be an ergodic automorphism. If S is a Markov quasi-
factor of T then S is a (classical) factor of some infinite ergodic self-joining
of T .

0.1.5 Basic affine automorphism of T2

Coming back to quasi-discrete spectrum automorphisms, recall that the
simplest example from this class (which is not with discrete spectrum) is
the transformation T of the additive torus T2 = [0, 1)2 (considered with
Lebesgue measure) given by the formula

T (x, y) = (x+ α, x+ y), (0.1.2)
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where α is irrational. Even though the form of ergodic joinings (of all orders)
for T is known 8 and the form of factors of infinite ergodic self-joinings of
T is also known, the problem whether MQF of T are its classical factors is
open.

If we want to describe ergodic self-joinings of T , we study the ergodic
decomposition of the transformations of Td+2 of the following form

(x, y1, y2, . . . , yd+1) 7→ (x+α, y1 +φ′(x), y2 +φ′(x+β1), . . . , yd+1 +φ′(x+βd))
with φ′(x) = x. That is, we must study the ergodicity problem of the cocycle9

Θ′d+1 : T→ Td+1, Θ′d+1 = (φ′, φ′ ◦ S1, . . . , φ
′ ◦ Sd),

where Si(x) = x + βi (i = 1, . . . , d), and its ergodicity depends whether
some cohomological equations admit measurable solutions (see Chapter 2 for
details).

0.1.6 Real-valued cocycles, Rokhlin cocycles - toward the main
problems of dissertation

The situation becomes more complicated when we look at φ′ as a real-valued
cocycle. In order to do it, we replace φ′ by φ(x) = x− 1

2 (φ : T→ R)10. We
now ask whether

Θd+1 : T→ Rd+1, Θd+1 = (φ, φ ◦ S1, . . . , φ ◦ Sd) (0.1.3)
is ergodic or, more generally, regular.11

It is a classical fact that Θ1 = φ is ergodic for every irrational rotation
(see e.g. [40]). In the paper [28], it was shown that Θ2 is regular whenever
α has bounded partial quotients.

The problem of regularity of cocycles (taking values in locally compact
second countable (l.c.s.c.) but not compact Abelian groups G, for example
G = Rd+1) of the above form is still important in the theory of joinings.
Indeed, assume that T ∈ Aut(X,B, µ) is ergodic and let G be an Abelian
l.c.s.c. group. Assume that ϕ : X → G is a cocycle and let G = (Rg)g∈G
be a (measurable12, measure-preserving) G-action on a probability standard

8This is a particular case of so called compact Abelian group extensions of rotations
for which joinings were described in [27].

9 For the definition, see Subsection 1.8.
10In order to study ergodicity or regularity of integrable real-valued cocycle we must

have them centered.
11For the definition, see 1.8.5.
12Measurability of a G-action means the continuity of all maps G 3 g 7→ 〈URgf1, f2〉 ∈ C

for each f1, f2 ∈ L2(Y, C, ν).
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Borel space (Y, C, ν). Then the automorphism Tϕ,G ∈ Aut(X×Y,B⊗C, µ⊗ν)
given by

Tϕ,G(x, y) = (Tx,Rϕ(x)(y))
is called a Rokhlin extension.

It turns out that self-joinings of higher order of Tϕ,G are strictly connected
with cocycles of the form (0.1.3) above. Indeed, Theorem 3 in [28] gives a
full description of all ergodic self-joinings of Tϕ,G whenever cocycles Θd+1 =
(φ, φ ◦ S1, . . . , φ ◦ Sd) are regular.

0.1.7 Strong regularity property
In what follows, we say that φ has the strong regularity property if all
cocycles Θ = Θd+1 = Θd+1(α, S1, . . . , Sd) of the above form are regular (for
all parameters d, α, S1, . . . , Sd).

The problem of strong regularity of affine cocycles is the main object
of study in the dissertation. One of the crucial observations (see Theorem
2.4.1) states that the diagonal subgroup ∆d+1 = {(t, ..., t) : t ∈ R} is always
included in the group of essential values of cocycle Θ. Due to this, the
problem of strong regularity of affine cocycles is reduced to the problem of
regularity of (vectorial) step cocycles of the form

Φd(x) = (1[0,βj) − βj)j=1,...,d. (0.1.4)

The problem of ergodicity or regularity of step functions, mainly in one
dimensional case, has been broadly studied in the literature, for instance
see [7], [8], [12], [30], [34], [37], [40]. We will generalize (see Theorem 0.1.2,
d = 2) the recent result from [52], where it was proved that Φ = (1[0,1/2)(·)−
1/2,1[0,1/2)(·+γ)−1/2) is regular for each γ ∈ T and α with bounded partial
quotients.

0.1.8 Description of the content of the dissertation. Chapter 1
We now pass to a description of the content of the dissertation. In Chapter
1, we recall some basics in ergodic theory that will be needed in what fol-
lows: necessary facts from spectral theory, mixing and rigidity properties,
induced automorphism, basic constructions (factors, extensions), coalescence
and weak isomorphism, joinings and Markov operators, introduction to the
theory of cocycles including the theory of Schmidt of essential values. We also
recall a few examples of dynamical systems (irrational rotations, automorph-
isms with discrete and quasi-discrete spectrum, Gaussian systems) that will
play special roles in the dissertation.
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0.1.9 Description of the content of the dissertation. Chapter 2
Chapter 2, containing original results, has been written on the base of [10]. It
begins by a further development of the theory of cocycles (Section 2.1) with
some new results on essential values of cocycles with values in an Abelian
l.c.s.c. group G and then in it is focused on the group G = Rd. In Section 2.2,
we present detailed combinatorial lemmas relating dynamical properties of an
irrational rotation by α with the Diophantine approximation of α by rational
numbers. In Section 2.3, we deal with the crucial problem of representation
of (vectorial) step cocycles, in particular we introduce the notion of rational
step cocycles. The main results can be summarized as follows.

Theorem 0.1.2. Let Φd be as in (0.1.4).

• For d = 1, Φd is regular for every irrational rotation.

• For d = 2, if α has bounded partial quotients, then Φd is regular.

• For d = 3, if α has unbounded partial quotients, then there exists a
choice of β1, β2, β3 making Φd a non-regular cocycle.

In Subsection 2.3.3, we also give sufficient conditions for the regularity
of step cocycles using methods based on Diophantine properties of the val-
ues of the integrals for rational cocycles or Diophantine properties of the
discontinuities of the cocycle.

Theorem 0.1.3. Let Φ be a zero mean step function. If Φ has well separated
discontinuities13, then the group of essential values E(Φ) includes the set
{σ(xi) : i = 1, . . . , D} of the jumps at the discontinuities xi of Φ. Moreover,
Φ is regular.

For a subset C of discontinuities of Φ, we denote σ(C) = ∑
xi∈C σ(xi) the

corresponding sum of jumps of Φ.

Theorem 0.1.4. Suppose that there are two discontinuities xi0 , xj0 of Φ and
a subsequence (qnk) of denominators of α such that for a constant κ > 0 we
have

qnk‖(xi0 − xj0)− rα‖ ≥ κ, ∀ |r| < qnk . (0.1.5)
13Let the points γn,` run through the set of discontinuities of Φn := Φ + Φ ◦ T + . . . +

Φ ◦ Tn−1 in the natural order. The cocycle is said to have well separated discontinuities
(wsd), if there are c > 0 and an infinite set Q of denominators of α such that

γq,`+1 − γq,` ≥ c/q, ∀q ∈ Q, ` ∈ {1, . . . , Dq}.
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Then, if the sum σ(C) is 6= 0 for each non-empty proper subset C of the set
of discontinuities of Φ, then Φ has a non-trivial essential value.

In Section 2.4, we present some applications of the results from previous
sections to affine cocycles. In particular, in Section 2.4.3., we show that the
cocycle (0.1.3) is ergodic for a generic choice (both in the measure-theoretic,
as well as topological sense) of parameters β1, . . . , βd, d ≥ 2.

0.1.10 Description of the content of the dissertation. Chapter 3
Chapter 3 is dedicated to the problem of Markov quasi-similarity and the
question of Vershik from Subsection 0.1.3. In Section 3.1 we use the char-
acterization of eigenfunctions proved by Lesigne [32] to show the following
result:

Theorem 0.1.5. A Markov quasi-factor of an automorphism with quasi-
discrete spectrum has quasi-discrete spectrum.

The main result of Section 3.2 (written on the base [14]) is the following
theorem:

Theorem 0.1.6. There exist mixing (of all orders) automorphisms which
are MQS but not weakly isomorphic.

The examples constructed in Section 3.2 are mixing extensions given by
Gaussian cocycles of a mixing Gaussian automorphism.



CHAPTER 1

Basic concepts in ergodic theory

1.1 General notions

By a probability standard Borel space one means any probability space
(X,B, µ) isomorphic to the space ([0, 1],B′, λ), where B′ stands for the σ-
algebra of Borel sets and λ denotes Lebesgue measure (sometimes, we may
need to complete B).

Equalities between sets, functions, σ-algebras etc. are usually understood
modulo null set for the measure µ. If T is a bijection it means an a.e. bijection,
i.e. after removing from X a set X0 of a measure zero, T becomes a genuine
bijection from X \X0 onto itself.

By isomorphism one means an a.e. bijection S : X1 → X2 which
is bimeasurable and which “preserves” the measure, in the sense that
µ1(S−1B2) = µ2(B2) for each B2 ∈ B2. Note that S−1 : (X2,B2, µ2) →
(X1,B1, µ1) is also an isomorphism.

1.2 Spectral theory

Let H be a separable Hilbert space and U : H → H be a unitary operator
on H and let x ∈ H.

1
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The sequence rn = 〈Unx, x〉, n ∈ Z, is positive definite, i.e. for any
(an)n>0 ⊂ C and N > 0

N∑
n,m=0

rn−manam > 0.

It follows from the Herglotz theorem (see e.g. [39]) that any positive
definite sequence is the Fourier transform of the unique, finite, non-negative,
Borel measure σx on S1 := {z ∈ C : |z| = 1} 14. Therefore, we can write

σ̂x[−n] :=
∫
S1
zndσx = 〈Unx, x〉, n ∈ Z,

i.e. σ̂x[n] denotes the n-th Fourier coefficient of the measure σx. The measure
σx is called the spectral measure of x (we may also write σx,U instead of σx
when a confusion can arise).

Definition 1.2.1. For an element x ∈ H, we define the cyclic space Z(x)
generated by x:

Z(x) = span{Unx : n ∈ Z}.

It is the smallest, closed, invariant subspace containing x.

Definition 1.2.2. A decomposition H = ⊕∞
i=1 Z(xi) is called spectral if

σx1 � σx2 � . . .

The main theorem in the spectral theory of unitary operators states that
for any unitary operator of a separable Hilbert space a spectral decomposition
exists and is unique in the following sense.

Theorem 1.2.1 (Spectral theorem). If U : H → H is unitary and H =⊕∞
i=1 Z(xi) = ⊕∞

i=1 Z(x′i) are two spectral decompositions of H then σxi ≡ σx′i
for every i > 1.

Definition 1.2.3. The type15 of the measure σx1 is called the maximal spec-
tral type σU of U .

Let A1 = S1 and for n > 2 denote

An = supp
dσxn
dσx1

.16 (1.2.1)

14 It is also known that, for each x, y ∈ H, there exists (a unique) complex measure σx,y
such that σ̂x,y[−n] = 〈Unx, y〉 for every n ∈ Z. Moreover, σx,y � σx for all x, y.

15By the type of a measure one means the set of equivalent measures to a given one. In
what follows, if no confusion arises we will not distinguish a measure and its type.

16The symbol dµ
dν stands for Radon-Nikodym derivative of µ with respect to ν, where

µ� ν.
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The sets An are defined σx1-a.e. and moreover

dσxn+1

dσx1

= dσxn+1

dσxn

dσxn
dσx1

.

Thus,
S1 = A1 ⊃ A2 ⊃ A3 ⊃ . . . (modulo σx1).

Definition 1.2.4. The function MU : S1 → {1, 2, . . .} ∪ {+∞} defined by

MU(z) =
∞∑
n=1

1An(z)

is called the multiplicity function of U .

Definition 1.2.5. Two unitary operators Ui on Hi, i = 1, 2, are called spec-
trally equivalent if there exists a surjective isometry W : H1 → H2 such that
W ◦ U1 = U2 ◦W .

Theorem 1.2.2. Unitary operators Ui on Hi, i = 1, 2, are spectrally equi-
valent if and only of σU1 = σU2 and MU1 = MU2 (σU1-a.e.).

It follows that the maximal type of U and the multiplicity function de-
termine the operator U .

Definition 1.2.6. Depending on the form of MU and σU one says that:

• U has simple spectrum, if MU ≡ 1,

• U has spectrum of uniform multiplicity N, if MU ≡ N ,

• U has singular spectrum, if σU is singular with respect to Lebesgue
measure,

• U has absolutely continuous (Lebesgue) spectrum, if σU is absolutely
continuous with (equivalent to) Lebesgue measure,

• U has discrete spectrum, if σU is a discrete measure 17.

It is well-known that the operator U : Z(x)→ Z(x) is spectrally equival-
ent to the operator Vσx : L2(S1, σx)→ L2(S1, σx) given by Vσx(f)(z) = zf(z).

We will make use of the following well-known lemmas.
17When U = UT then it is easy to see that σU is discrete if and only if T has discrete

spectrum in the sense of Definition 1.9.2.
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Lemma 1.2.3. Let Ui be a unitary operator of a separable Hilbert space Hi,
i = 1, 2. Let V : H1 → H2 be linear and continuous operator intertwining U1
and U2. Then σV x,U2 � σx,U1 .

Proof. For each n ∈ Z, we have

〈Un
2 V x, V x〉 = 〈V Un

1 x, V x〉 = 〈Un
1 x, V

∗V x〉.

Therefore, σ̂V x[n] = σ̂x,V ∗V x[n] for each n ∈ Z (cf. footnote 14). Since
σx,V ∗V x � σx, the assertion follows.

Lemma 1.2.4. Let U1, U2, V be as above. If ImV = H2 then the set of
eigenvalues of U2 is a subset of the set of eigenvalues of U1.

Proof. Let Hi = Hid ⊕ Hic be the decomposition of Hi into two invariant,
closed subspaces, where σUi|Hid is discrete and σUi|Hic is continuous, i = 1, 2.
By Lemma 1.2.3, V (H1d) ⊂ H2d, V (H1c) ⊂ H2c. Suppose that U2y = cy
and c in not an eigenvalue of U1. Then y ⊥ V (H1d) and y ⊥ H2c, whence
y ⊥ V (H1) and therefore y = 0, since V H1 = H2.

For more information on the subject, see e.g. [11], [19], [26].

1.3 Ergodicity, mixing, rigidity
Definition 1.3.1. One says that T ∈ Aut(X,B, µ) is:

• ergodic, if for every A ∈ B 18

T−1A = A ⇒ (µ(A) = 0 or µ(A) = 1);

equivalently,

lim
N→∞

1
N

N∑
k=1

µ(T kA ∩B) = µ(A)µ(B)

for all A,B ∈ B,

• totally ergodic, if T k is ergodic for every k > 0,
18We also consider infinite measure-preserving automorphisms, e.g. Tϕ : (X × G,B ⊗
B(G), µ⊗mG)→ (X ×G,B ⊗ B(G), µ⊗mG), where mG is a Haar measure of an l.c.s.c.
group G which is not compact. In this case, ergodicity means that each invariant set is
either of measure zero or its complement set is of measure zero.
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• weakly mixing, if for all A,B ∈ B

lim
N→∞

1
N

N∑
k=1
|µ(T kA ∩B)− µ(A)µ(B)| = 0,

• mixing, if for all A,B ∈ B
lim
n→∞

µ(T nA ∩B) = µ(A)µ(B),

• mixing of order k, for all A1, . . . Ak ∈ B

lim
n2,...,nk→∞,|ni−nj |→∞,i 6=j

µ(A1 ∩ T n2A2 ∩ . . . ∩ T nkAk) =
k∏
i=1

µ(Ai).

Definition 1.3.2. An increasing sequence (qn) ⊂ N is called a rigidity
sequence for T if T qn −−−→

n→∞
Id strongly, i.e. ‖UT qnf − f‖ → 0 for every

f ∈ L2(X,B, µ).
Some dynamical properties of T ∈ Aut(X,B, µ) have their characteriza-

tions in terms of spectral properties of UT :
• T is ergodic if and only if 1 is a simple eigenvalue of UT .

• T is totally ergodic if and only if it is ergodic and in the spectrum of
UT there is no non-trivial root of unity.

• T is weakly mixing if and only if UT has continuous spectrum on the
subspace L2

0(X,B, µ) of L2(X,B, µ) of zero mean functions.

• T is mixing if and only if σUT on L2
0(X,B, µ) is a Rajchman measure,

i.e. σ̂UT (n) −−−−→
|n|→∞

0.

For more information on the subject, see e.g. [11], [15], [51].

1.4 Induced automorphism and Rokhlin lemma
Let T ∈ Aut(X,B, µ) and A ∈ B a set of positive measure. Then, for µ-a.e.
x ∈ A, the first return time

nA(x) := inf{n > 1 : T nx ∈ A}
of x to A is well defined (Poincaré’s lemma, e.g. [51]).

The map TA : A → A given by TA(x) = T nA(x)(x) is called the first
return map or induced automorphism. The induced automorphism is an
automorphism of the space (A,BA, µA), where BA = {B ∈ B : B ⊂ A} and
µA(B) = µ(B)

µ(A) for each B ∈ BA. If T is ergodic then TA is also ergodic.
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Definition 1.4.1. T is called aperiodic if for each n ≥ 1, the set {x ∈ X :
T nx = x} has measure zero.

Definition 1.4.2. The collection A, TA, . . . T h−1A is called a Rokhlin tower
of the height h and the base A if T iA ∩ T jA = ∅ for 0 6 i < j < h.

Lemma 1.4.1. Let T be an aperiodic measure-preserving transformation of
(X,B, µ). Then for arbitrary h ∈ N and ε > 0 there exists a Rokhlin tower
of the height n and the base A such that µ

(⋃h−1
k=0 T

kA
)
> 1− ε.

Remark 1.4.1. It is well known that if we fix ε >, h ≥ 1 and a set A ∈ B
of positive measure then we can find a Rokhlin tower F, . . . , T h′−1F with
h′ ≥ h, µ(⋃h′−1

i=0 T iF ) > 1− ε and such that F ⊂ A.

Remark 1.4.2. It follows directly from definition that if F, TF, . . . , T h−1F
is a Rokhlin tower and A = T kF (for some 0 6 k 6 h− 1) then nA(x) > h.

For more information on the subject, see e.g. [11], [15], [51].

1.5 Factors and extensions
Assume that T ∈ Aut(X,B, µ), S ∈ Aut(Y, C, ν).

Recall that S is said to be a factor of T (and T to be an extension of
S) if there exists a “measure-preserving” map R : X → Y 19 such that
R ◦ T = S ◦R 20.

Notice that if S is a factor of T (with R as above) then R−1(C) is a
T -invariant sub-σ-algebra of B. On the other hand, with every invariant
sub-σ-algebra A of B we can associate a factor of T 21.

Assuming T is ergodic, it was shown in [3] that every ergodic extension
T̃ of T can be realized as a skew product over T , i.e. the automorphism
T̃ ∈ Aut(X̃, B̃, µ̃) is isomorphic with some automorphism T : (X × Y,B ⊗
C, µ⊗ ν)→ (X × Y,B ⊗ C, µ⊗ ν) given by

T (x, y) = (Tx, Sxy), (1.5.1)
19Recall that it means that ν = R∗(µ), i.e. for every A ∈ C, ν(A) = µ(R−1A).
20If (X,B, µ) = (Y, C, ν) then each measure-preserving R : X → Y is called an endo-

morphism.
21One defines the factor as: Y = X/A (we do not distinguish points which cannot

be separated by the sets from A), the measure structure is given by (A, µ|A) and T
operates in a natural way on the resulting quotient space. Sometimes, we will denote
the resulting factor-automorphism by T |A. We should notice however that to say that
factor-automorphisms are defined on probability standard Borel spaces we need a slight
extension of the latter notion in General notions and admit atoms.
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where (Sx)x∈X ⊂ Aut(Y, C, ν) is a measurable family22. Note that T is a
factor of T .

A special case of skew products are aforementioned Rokhlin extensions,
i.e. automorphisms of the form

Tϕ,G(x, y) = (Tx, Sϕ(x)y),
where G = (Sg)g∈G is a measurable representation of an Abelian l.c.s.c. group
G in Aut(Y, C, ν) and ϕ : X → G is a measurable function (see for example,
[29]).

1.6 Coalescence and weak isomorphism
Definition 1.6.1. [36] An automorphism T ∈ Aut(X,B, µ) is called co-
alescent if every endomorphism S : (X,B, µ) → (X,B, µ), S ◦ T = T ◦ S,
is invertible. Equivalently, the operator USf = f ◦ S, f ∈ L2(X,B, µ), is
unitary.

It follows from [36] that each automorphism T for which σUT ({∞}) = 0
is coalescent. In particular, all automorphisms with simple spectrum are
coalescent.

Later, we will make use of the following well-known observation.

Remark 1.6.1. If T is coalescent and T is weakly isomorphic to T1, then T
and T1 are isomorphic. Indeed, T1, as a factor of T , is represented as a T -
invariant sub-σ-algebra B1 ⊂ B (and T1 can be identified with the quotient
action of T on (X/B1,B1, µ|B1)). By the same token (reversing the rules
of T and T1) there exists a T -invariant sub-σ-algebra B2 ⊂ B1 such that
the quotient action, say T |B2 , of T on (X/B2,B2, µ|B2) is isomorphic to the
original automorphism T . Then, each isomorphism, say S, of T and T |B2 is
in fact an endomorphism of (X,B, µ) and since S ◦ T = T ◦ S, it must be
invertible. Therefore B1 = B2 = B.

1.7 Joinings and Markov operators
Recall that if Ti ∈ Aut(Xi,Bi, µi), i > 1, then each T1 × T2 × . . .-invariant
probability measure on (X1×X2× . . . ,B1⊗B2⊗ . . .) with each Xi-marginal
equal to µi, is called a joining of T1, T2, . . .

22Here, the measurability means that the map X×C 3 (x,A) 7→ SxA ∈ C is measurable.
One considers C (modulo sets of measure zero) as a metric space with the distance given
by the measure of the symmetric difference between sets.
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We denote by J(T1, T2, . . .) the set of all joinings of T1, T2, . . . If we assume
additionally that each Ti, i > 1, is ergodic then J(T1, T2, . . .) is a simplex.
Then the extremal points in J(T1, T2, . . .) are exactly ergodic joinings, i.e. all
joinings λ for which (T1×T2× . . . , λ) is ergodic. By Je(T1, T2, . . .) we denote
the set of ergodic joinings. For each joining λ ∈ J(T1, T2, . . .), its ergodic
decomposition consists of ergodic joinings.

When T1 = T2 = . . . = T , we speak about self-joinings and we use
notation Jn(T ), Jen(T ) if only finitely many, say n, copies of T are in-
volved or J∞(T ), Je∞(T ) for the infinite case. Recall that there is one-to-
one correspondence between J(T1, T2) and the set of all Markov operat-
ors Φ : L2(X1,B1, µ1) → L2(X2,B2, µ2) satisfying the intertwining relation
Φ ◦ UT1 = UT2 ◦ Φ.

Here are the simplest examples of 2-self-joinings of an ergodic T ∈
Aut(X,B, µ):

• the product measure µ⊗ µ,

• the graph self-joining µS corresponding to S ∈ C(T ) 23, where µS(A×
B) = µ(A ∩ S−1B) for each A,B ∈ B,

• the relative product µ ⊗A µ corresponding to a factor A ⊂ B, where
µ⊗A µ(A×B) =

∫
X/AE(A|A)(x) · E(B|A)(x) d(µ|A)(x).

Note that µS ∈ Je2(T ) and the product measure µ⊗µ ∈ Je2(T ) if and only
if T is weakly mixing. Moreover, the Markov operators corresponding to the
three types of joinings listed above are Π 24, US, E(·|A), respectively.

For more information about joinings we refer to e.g. [15], [45].

1.8 Essential values of a cocycle taking values in Abelian
groups

In this subsection, we recall the definition and general results about essential
values of a cocycle (see [1], [46]).

Let (X,B, µ) be a (non-atomic) probability standard Borel space and
T : (X,B, µ)→ (X,B, µ) an ergodic automorphism. Such an automorphism
is then automatically aperiodic Assume that G is an Abelian l.c.s.c. group
with the σ-algebra of its Borel sets B(G) and a fixed Haar measure mG (we

23By C(T ) we denote the centralizer of T , i.e. the set of all R ∈ Aut(X,B, µ), R ◦ T =
T ◦R.

24The operator Π : L2(X,B, µ)→ L2(X,B, µ) is given by formula Πf =
∫
X
f dµ.
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will also write dg instead of mG). Denote by G = G ∪ {∞} the one-point
compactification of G (when G is non-compact).

For a measurable function ϕ : X → G, we set (ϕn)

ϕn(x) =
n−1∑
k=0

ϕ(T kx), n ≥ 1,

and we extend the formula to all n ∈ Z so that, for n, k ∈ Z, ϕn+k(x) =
ϕn(x) + ϕk(T nx). In this way we obtain a cocycle 25 for the Z-action given
by n 7→ T n, n ∈ Z. For simplicity, the function ϕ itself will be often called a
cocycle. We recall that

Definition 1.8.1. A cocycle ϕ : X → G is called ergodic if the automorph-
ism Tϕ : (x, g)→ (Tx, g+ϕ(x)) is ergodic on X ×G for the measure µ⊗ dg.

1.8.1 Recurrence of a cocycle with values in Rd

Let ‖ · ‖ be a norm on Rd. The inequality
∣∣∣‖ϕn+1(x)‖−‖ϕn(Tx)‖

∣∣∣ ≤ ‖ϕ(x)‖
implies the T -invariance of the set {x ∈ X : limn ‖ϕn(x)‖ = +∞}. There-
fore, by ergodicity, this set has measure 0 or 1, and we have the following
alternative: either for µ-a.e. every x ∈ X, limn ‖ϕn(x)‖ = +∞ or for µ-a.e.
x ∈ X, lim infn ‖ϕn(x)‖ < +∞.

Definition 1.8.2. A cocycle (ϕn) over (X,µ, T ) with values in G = Rd

is called recurrent if lim infn ‖ϕn(x)‖ < +∞, for a.e. x ∈ X. It is called
transient if limn ‖ϕn(x)‖ = +∞ for a.e. x ∈ X.

Let us recall some notions and facts from the theory of dynamical systems
preserving an infinite measure.

Definition 1.8.3. Let T ∈ Aut(X,B, µ) and µ be a σ-finite measure. A set
A is said to be wandering if the images (T−nA)n∈Z are pairwise disjoint. The
automorphism T is called conservative if there is no wandering measurable
set of positive measure.

Lemma 1.8.1. 1. For every A ∈ B, the set B := {x ∈ A : T nx /∈
A,∀n > 1} is a wandering set.

25 That is,

ϕn(x) =

 ϕ(x) + ϕ(Tx) + . . .+ ϕ(Tn−1x), n > 0
0, n = 0
−(ϕ(Tnx) + . . .+ ϕ(T−1x)), n < 0.
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2. If F is a set with finite measure and B ∈ B a wandering set then for
a.e. x ∈ B the number of visits to F is finite.

Proof. 1. Suppose y ∈ T−n1B∩T−n2B, with n2 > n1, then T n1y ∈ B ⊂ A
and T n2−n1(T n1y) ∈ B ⊂ A which contradicts the definition of B.

2. The observation is based on the Borel-Cantelli type26 argument. The
images of B are pairwise disjoint and therefore we have∑

n>0
µ(B ∩ T−nF ) =

∑
n>0

µ(T nB ∩ F ) 6 µ(F ) < +∞.

It follows that for almost every x ∈ B, ∑n>0 1F (T nx) < +∞.

Remark 1.8.1. 1. By 1) of Lemma 1.8.1, conservativity is equivalent to
“for every measurable set A, a.e. x ∈ A returns to A”.

2. If µ(X) < +∞, there is no wandering set of positive measure, hence
every dynamical system with finite measure is conservative.

3. In a conservative dynamical system, since a.e. x ∈ A returns to A at
least once, it must return to A infinitely often.

4. If T is conservative then the induced automorphism TA is conservative
for every A of positive measure.

Returning to the theory of cocycles, we obtain the following classical
result.

Lemma 1.8.2. A cocycle (ϕn) is recurrent if and only if Tϕ is conservative
with respect to λ = µ⊗mG.

Proof. For M > 0, let UM = {z ∈ Rd : ||z|| 6M} and AM := X × UM .
“⇐” Suppose that Tϕ is conservative. Then a.e. point (x, z) ∈ AM returns

infinitely many times to AM . Therefore for a.e. x ∈ X, lim infn ||ϕn(x)|| <∞.
“⇒” Suppose (ϕn) is recurrent. Let A ⊂ X × Rd be a set of positive

measure. We need to show that points of A are returning to A. We can
assume that A is bounded, i.e. for some M > 0, A ⊂ AM . Let B be the
set of points of A that never return to A. Then B is wandering (see Lemma
1.8.1). Fix ε > 0. By recurrence, there exists L > 0 such that the set
R := {x ∈ X : lim infn ||ϕn(x)|| < L} has measure µ greater than 1 − ε. It
follows that a.e. (x, z) ∈ B ∩ (R× UM):

26Borel-Cantelli Lemma : Let (X,B, µ) be a probability space and (Cn)n>0 be a sequence
of sets from B. If

∑∞
n=1 µ(Cn) <∞ then for almost all x ∈ X the set {n;x ∈ Cn} is finite.
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• returns to X × UM+L infinitely often (indeed, x ∈ R, ||z|| < M
and ||ϕni(x)|| < L for some n1 < n2 < . . . ; moreover, T niϕ (x, z) =
(T nix, ϕni(x) + z) and ‖ϕni(x) + z|| 6 ‖ϕni(x)‖+ ‖z‖ 6 L+M).

• returns to X×UM+L only finitely many times if we apply Lemma 1.8.1
(for F = AM+L),

which yields a contradiction. It follows that B ⊂ Rc × UM (since B ⊂
X×UM). Hence µ⊗dg(B) < Mε and since ε > 0 is arbitrary, µ⊗dg(B) = 0,
and the proof is complete.

Let us consider T ∈ Aut(X,B, µ), where µ is a finite measure. Let ϕ :
X → G be a cocycle. We induce ϕ on a set of positive measure A by putting

ϕA(x) := ϕnA(x)(x) =
nA(x)−1∑
j=0

ϕ(T jx).

Hence, the “induced” cocycle for the induced automorphism TA on A is given
by

ϕAn (x) := ϕA(x) + ϕA(TAx) + . . .+ ϕA(T n−1
A x), for n > 1.

Remark 1.8.2. If (ϕn) is recurrent, then the induced cocycle (ϕAn ) is recur-
rent. Indeed, (TA)ϕA is the induced automorphism on A×G of Tϕ which is,
following the previous lemma, conservative if (ϕn) is recurrent. Clearly, the
conservativity of Tϕ implies the conservativity of (TA)ϕA , hence the recurrence
of the cocycle (ϕAn ) over TA.

The following lemma provides another equivalent condition for recurrence.

Lemma 1.8.3. A cocycle (ϕn) is recurrent if and only if for each neighbor-
hood U 3 0 and A ⊂ X of positive measure there exists n ∈ Z \ {0} such
that

µ(A ∩ T−nA ∩ [ϕn ∈ U ]) > 0. (1.8.1)

Proof. Following Remark 1.8.2, if (ϕn) is recurrent, then the cocycle (ϕAn ) is
recurrent and therefore for every neighborhood U of 0, there is, for a.e. x,
an infinite sequence (nk) = (nk(x)) such that T nkx ∈ A and ϕnk(x) ∈ U ,
∀k ≥ 1. Let Al := {x ∈ A : T lx ∈ A and ϕl(x) ∈ U}. Up to a set of measure
zero, we have A = ∪l>1Al. Therefore, there is l0 > 1 such that µ(Al0) > 0,
which shows the property (1.8.1).

Conversely, suppose that the cocycle is transient. Then there exists n1 >
1 such that if we set Y := {x ∈ X : ‖ϕn(x)‖ > 1 for each n > n1} then
µ(Y ) > 1/2. Because of the aperiodicity of T , there is C ⊂ X such that the
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sets T kC, for k = 0, . . . , n1−1 are disjoint and µ(∪n1−1
0 T kC) > 1/2. It follows

that there exists k ∈ {0, 1, . . . , n1 − 1} such that µ(Y ∩ T kC) > 0. Let B :=
T kC. The first return time nB(x) to B of a point x ∈ B satisfies nB(x) ≥ n1.
It follows that for every n ≥ n1, we have µ(B ∩ T−nB ∩ [ϕn ∈ U ]) = 0 for
U = {z ∈ Rd : ||z|| < 1}. Hence, the property (1.8.1) with U defined above
is not satisfied by B since µ(B ∩ T−nB) = 0 for n = 0, . . . , n1 − 1.

Remark 1.8.3. In order to give a simple example of a non-trivial recurrent
cocycle consider a cocycle ϕ : X → G such that ϕ`n → 0 in measure, where
(ln) is a rigidity sequence for T . Then ϕ is recurrent; indeed, in (1.8.1),
T−lnA is almost equal to A while [ϕln ∈ U ] is almost the whole space X.

Remark 1.8.4. For each d ≥ 1, the cocycle generated by a (measurable)
function ϕ : T → Rd over any irrational rotation, say by α, is recurrent if
the components of ϕ have bounded variation and integral 0. Indeed, by the
Denjoy-Koksma inequality (2.2.1), since (ϕqn) is a bounded sequence in Rd

((qn) stands for the sequence of denominators of α, see Section 1.8.1), the
condition lim infn ‖ϕn(x)‖ <∞ holds for every x ∈ T.

1.8.2 Regular cocycles

Definition 1.8.4. A cocycle ϕ : X → G is called a coboundary if ϕ = f−f◦T
for a measurable map f : X → G. Two cocycles ϕ, ψ : X → G are called
cohomologous if ϕ− ψ is a coboundary.

An obvious obstruction to the ergodicity of a cocycle ϕ is that ϕ is co-
homologous to a cocycle ψ taking its values in a proper closed subgroup of
G. This suggests the following definition:

Definition 1.8.5. A cocycle ϕ : X → G is called regular if it is cohomo-
logous to a cocycle ψ taking values in a closed subgroup H of G such that
Tψ : (x, h) → (Tx, h + ψ(x)) is ergodic on X × H for the measure µ ⊗ dh,
where dh is a (fixed) it Haar measure on H.

So, a regular cocycle is “almost” ergodic (up to reduction by cohomology
to a smaller closed subgroup).

One of the main tools for studying the ergodicity and the regularity of a
cocycle is the following notion.

Definition 1.8.6. An element g ∈ G is called an essential value for a cocycle
ϕ, if for each open neighborhood U 3 g in G, for each A ∈ B of positive
measure, there exists N ∈ Z such that µ(A ∩ T−NA ∩ [ϕN ∈ U ]) > 0. We
denote the set of essential values by E(ϕ) and we set E(ϕ) := E(ϕ) ∩G.
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Note that if 0 6= g ∈ E(ϕ) then we have µ(A∩ T−NA∩ [ϕN ∈ U ]) > 0 for
infinitely many values of N ∈ Z. Indeed, because T is ergodic and aperiodic,
for each N ∈ Z \ {0} we can find a subset C ⊂ A, µ(C) > 0 such that
TNC ∩ C = ∅ (see Remark 1.4.2).

Lemma 1.8.4. Cocycles with non-trivial essential values are recurrent.

Proof. Assume that g ∈ E(ϕ) \ {0}. We show the property (1.8.1). Take U a
neighborhood of 0 ∈ G. Then find N ∈ Z so that there is B ⊂ X, µ(B) > 0
such that

B ⊂ A, TNB ⊂ A and ϕN(B) ⊂ g + U.

Apply once more the definition of the essential value, this time to the set
TNB to find C ⊂ X, µ(C) > 0 and an integer M 6= N such that

C ⊂ TNB, TMC ⊂ TNB and ϕM(C) ⊂ g + U .

Now, for x ∈ C ⊂ A we have TM−Nx = T−N(TMx) ∈ T−N(TNB) = B ⊂
A. Moreover,

ϕM−N(x) = ϕM(x) + ϕ−N(TMx) = ϕM(x)− ϕN(TM−Nx) ∈ U − U

since TM−Nx ∈ B.

It turns out that E(ϕ) is a closed subgroup of G. Besides, two cohomo-
logous cocycles have the same group of essential values.

Let σg(x, h) := (x, g + h), g ∈ G, be the action of G on X × G by
translations on the second coordinate. Clearly, it commutes with Tϕ. Then
(see [46], Theorem 5.2) E(ϕ) is the stabilizer of the Mackey action of ϕ, that
is
E(ϕ) = {g ∈ G : F ◦ σg = F,

∀measurable, Tϕ-invariantF : X ×G→ C}.
(1.8.2)

In other words, E(ϕ) is the group of periods of the measurable, Tϕ-
invariant functions. Therefore, ϕ is ergodic if and only if E(ϕ) = G. If
ϕ is regular, then the group H in the definition of regularity is necessarily
E(ϕ). Coboundaries are precisely regular cocycles ϕ with E(ϕ) = {0}.

1.9 Examples of dynamical systems
1.9.1 Irrational rotations and continued fraction expansions
Let T = [0, 1) denote the additive circle. Assume that α ∈ [0, 1) is irrational.
Set Tx = x+ α mod 1 for x ∈ T. Moreover, T ∈ Aut(T,B(T),mT). Then T
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is ergodic and since UT (rn) = e2πinαrn, rn(x) = e2πinx (n ∈ Z), T has discrete
spectrum (see Definition 1.9.2 below).

Let us recall some basic facts about continued fractions (e.g. [20]). Let
[0; a1, ..., an, ...] be the continued fraction expansion of α ∈ (0, 1), i.e.

α =
1

a1 +
1

a2 +
1

a3 + . . .

and let (pn/qn)n≥−1 be the sequence of its convergents. The integers pn (resp.
qn) are the numerators (resp. denominators) of α. We have p−1 = 1, p0 = 0,
q−1 = 0, q0 = 1, and for n ≥ 1:

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, (−1)n = pn−1qn − pnqn−1. (1.9.1)

As usual, the fractional part of u ∈ R is demoted by {u} = u − [u],
where [u] is the integral part of u. For u ∈ R, set ‖u‖ = infn∈Z |u − n| =
min({u}, 1− {u}). Then for any integer M we have ‖Mu‖ 6 |M |‖u‖. Note
that ‖ · ‖ yields a translation invariant distance on T.

We have for n ≥ 0, ‖qnα‖ = (−1)nθn with θn = qnα− pn, and moreover

1 = qn‖qn+1α‖+ qn+1‖qnα‖, (1.9.2)
1

qn+1 + qn
≤ ‖qnα‖ ≤

1
qn+1

= 1
an+1qn + qn−1

, (1.9.3)

‖qnα‖ ≤ ‖kα‖, for 1 ≤ |k| < qn+1. (1.9.4)

Definition 1.9.1. An irrational α is said to be of bounded type if the sequence
(an) is bounded.

1.9.2 Dynamical systems with discrete and quasi-discrete spec-
trum

Assume that T ∈ Aut(X,B, µ). Denote by E0(T ) the group all eigenvalues
of UT and for each integer k > 0 set

Ek(T ) = {f ∈ L2(X,B, µ) : |f | = 1, f ◦ T · f ∈ Ek−1(T )}.

Remark 1.9.1. Observe that when T is ergodic, the set {λf : λ ∈ C and f ∈
E1(T )} is the set of eigenfunctions for UT .

Definition 1.9.2. T is said to have a discrete spectrum if E1(T ) is linearly
dense in L2(X,B, µ).
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Definition 1.9.3. T is said to have quasi-discrete spectrum if T is totally
ergodic and the subspace generated by ∪k∈NEk(T ) equals L2(X,B, µ).

Clearly, each irrational rotation Tx = x + α has quasi-discrete spec-
trum. The simplest example of an automorphism with quasi-discrete but
not discrete spectrum is given by the group extension Tϕ of T by an af-
fine cocycle ϕ(x) = mx + c (ϕ : T → T, m ∈ Z \ {0}, c ∈ T). That is,
Tϕ : T2 → T2, Tϕ(x, y) = (x + α,mx + y + c). Indeed, for qk(x, y) = e2πiky

we have qk ◦ Tϕ(x, y) = e2πikcrkm(x)qk(x, y), so qk ∈ E2(Tϕ).

Remark 1.9.2. Assume that T has quasi-discrete spectrum and let ρ ∈
Je∞(T ). Then ⋃∞k>0Ek(T ×T × . . . , ρ) is linearly dense in L2(X×X× . . . , ρ).
Indeed, by induction on k we show that whenever f1, . . . , fr ∈ Ek(T ) and we
let F (x1, x2, . . .) := f1(x1) · f2(x2) . . . · fr(xr), then F ◦ (T × T × . . .) · F ∈
Ek−1(T × T × . . . , ρ), so F ∈ Ek(T × T × . . . , ρ).

It looks as if ergodic self-joinings of an automorphism with quasi-discrete
spectrum yield automorphisms with quasi-discrete spectrum. However, this
is not the case because an ergodic self-joining need not be totally ergodic.27

We will bypass such a difficulty in Chapter 3.
We define Gn(T ) = {f : X → S1 : f ∈ L2(X,B, µ), Rnf = 1} for

n = 0, 1, 2, . . ., where Rf = f ◦ T/f (R0 = Id).

Lemma 1.9.1. Let T be ergodic, then Gn(T ) = En−1(T ) for n > 2.

Proof. Induction on n. Let n = 2 and assume that f ∈ L2(X,B, µ), |f | = 1
and R2f = 1. It follows that f◦T

f
◦T = f◦T

f
, that is f◦T

f
is T -invariant, whence

by the ergodicity of T , it is constant. Thus G2(T ) ⊂ E1(T ). Obviously,
E1(T ) ⊂ G2(T ).

Assume now that Gn(T ) = En−1(T ) and take f ∈ Gn+1(T ). It follows
that Rn+1(f) = Rn(Rf) = 1 and therefore Rf ∈ Gn(T ) = En−1(T ). By the
definitions of En−1(T ) and R it follows that f ◦ T = g · f with g ∈ En−1(T )
which implies f ∈ En(T ).

Conversely, if f ∈ En(T ) then f ◦ T = g · f for g ∈ En−1(T ) = Gn(T )
(the latter equality follows by the induction assumption). It follows that
Rn+1f = Rn(Rf) = Rn(g) = 1 and therefore f ∈ Gn+1(T ).

27Indeed, if T (x, y) = (x + α, x + y) then the automorphism (x, y, z) W7−→ (x + α, y +
z, z+x+1/2) is a self-joining of T . Moreover, F (x, y, z) = e2πi(z−y) satisfies F ◦W = −F .
However, W is not ergodic (see Subsection 1.9.4 and consider the character (y, z) 7→
2y − 2z). On the other hand, for a.e. ergodic component of W , F restricted to it satisfies
the equation above. Moreover, for some of these ergodic components F 6= 0. An ergodic
component of W is still an ergodic self-joining of T (cf. Subsection 1.7).
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Lemma 1.9.2. Let T be ergodic and S an endomorphism of (X,B, µ) such
that S ◦ T = T ◦ S. Then US(Gn(T )) ⊂ Gn(T ).
Proof. Induction on n. Clearly, the assertion is true for n = 0, 1 as G0 = {1}
and G1 = {c : c ∈ S1}. In view of Lemma 1.9.1, we only need to show
(inductively) that US(Ek(T )) ⊂ Ek(T ) for k ≥ 1. Assume that f ∈ Ek(T ).
Then f ◦ T = g · f with g ∈ Ek−1(T ). We have

(f ◦ S) ◦ T = (f ◦ T ) ◦ S = (g · f) ◦ S = g ◦ S · f ◦ S.

By the inductive assumption, g ◦ S ∈ Ek−1(T ) and therefore f ◦ S ∈ Ek(T ).

Lemma 1.9.3. If g ∈ Gn+1(T ) and S an endomorphism such that S ◦ T =
T ◦ S then g ◦ S/g ∈ Gn(T ).
Proof. For n = 0 the assertion is true as the ergodicity of T implies that g is
constant whenever g ∈ G1(T ). Thus g ◦S/g = 1 ∈ G0(T ). Suppose now that
g◦S/g ∈ Gn(T ) whenever g ∈ Gn+1(T ) for n = 1, 2, . . . ,m. Let g ∈ Gm+2(T ).
Then g ◦ T = h · g with h ∈ Gm+1(T ). Thus, g ◦ S ◦ T = h ◦ S · g ◦ S and
g ◦S ◦T/g ◦T = (h◦S/h)(g ◦S/g), where, by assumption, h◦S/h ∈ Gm(T ).
By the definition of Gm+1(T ), we have g ◦ S/g ∈ Gm+1(T ).

We will make use of the following theorem.
Theorem 1.9.4. ([17]) If T has quasi-discrete spectrum, then T is coales-
cent.
Proof. Assume that S is an endomorphism of (X,B, µ) which commutes with
T . We need to show that US is unitary. By Lemma 1.9.2, it suffices to
show that US maps Gn(T ) onto itself for n = 0, 1, . . . Clearly, it is true for
n = 0. Suppose now that US maps Gn(T ) onto Gn(T ). We have to show
that US maps Gn+1(T ) onto Gn+1(T ). By Lemma 1.9.3, if g ∈ Gn+1(T ),
then g ◦ S/g = h ∈ Gn(T ). By the induction assumption, there exists
h′ ∈ Gn(T ) for which USh

′ = h′ ◦ S = h. If we now set g′ := g/h then we
have USg′ = g′ ◦ S = g ◦ S/h′ ◦ S = g ◦ S/h = g.

We also recall the following classical result by Hahn and Parry ([17]):
Theorem 1.9.5. If T has quasi-discrete spectrum, S is a factor of it, then
S has quasi-discrete spectrum.

For a full classification of automorphisms with quasi-discrete spectrum
see [2] 28.

28Each automorphism T with quasi-discrete spectrum can be represented as Tx = Ax+b
where X is an Abelian compact connected and metrizable group, A is (continuous, group)
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1.9.3 Gaussian dynamical systems
We will recall now necessary facts from [24] and [25] needed for the sequel.

Assume that σ is a finite, continuous, symmetric, Borel measure on S1 =
{z ∈ C : |z| = 1}. Then, on the space Xσ = RZ endowed with the natural
Borel structure there exists a probability measure µσ (called a Gaussian
measure) such that the process (Pn)n∈Z defined by

Pn : Xσ → R, Pn(ω) = ωn for n ∈ Z,

is a real stationary centered Gaussian process whose spectral measure is σ,
i.e.

σ̂[−n] =
∫
S1
zn dσ(z) =

∫
Xσ
PnP0 dµσ for all n ∈ Z.

If we denote by Tσ the shift transformation29 on Xσ then the automorphism
Tσ : (Xσ, µσ)→ (Xσ, µσ) is a (standard) Gaussian automorphism 30 with the
real Gaussian space

Hσ = span{Pn = P0 ◦ T nσ : n ∈ Z} ⊂ L2(Xσ, µσ).

The space Hσ corresponds to the subspace Hσ of L2(S1, σ) consisting of
functions g satisfying g(z) = g(z) (σ-a.e). In this representation, the action
of UTσ on Hσ is given by V (g)(z) = zg(z), while the variable P0 corresponds
to the constant function 1 = 1S1 . If g ∈ Hσ ⊂ L2(S1, σ) is of modulus 1
(a.e.), then it determines a unitary operator W on L2(S1, σ) acting by the
formula W (f)(z) = g(z)f(z). Moreover, W ◦ V = V ◦W . Then, there is a
unique extension of W to a unitary (Koopman) operator US on L2(Xσ, µσ),
where S : (Xσ, µσ) → (Xσ, µσ) and S belongs to the Gaussian centralizer
Cg(Tσ) of Tσ i.e. to the set of all elements of the centralizer C(Tσ) which
preserve the Gaussian space Hσ (note that Cg(Tσ) is Abelian). Because of
the continuity of σ, Tσ is ergodic, in fact, weakly mixing. We also recall that
if Tσ is mixing (equivalently, σ is a Rajchman measure, i.e. σ̂[n] −−−−→

|n|→∞
0)

then it is mixing of all orders (Leonov’s theorem, for a simple proof see e.g.
[24]).

automorphism of X and b ∈ A. Moreover, it has zero entropy. Note that Tϕ : T2 → T2,

Tϕ(x, y) = (x+α,mx+ y+ c) is of the above form with A given by the matrix
[

1 0
m 0

]
and b = (α, c).

29Tσ((wn)n∈Z) = (vn)n∈Z, where vn = wn+1, n ∈ Z.
30Assume that T ∈ Aut(X,B, µ). T is said to be a Gaussian automorphism if: (i) there

exists a real UT -invariant closed subspace H ⊂ L2(X,B, µ) such that each 0 6= h ∈ H is
a Gaussian variable, (ii) the smallest σ-algebra B(H) ⊂ B with the respect to which all
h ∈ H are measurable is equal to B. H is then called the Gaussian space of T .
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Following [25], Tσ is called GAG (or σ is a GAG measure) if for each
ρ ∈ Je2(Tσ) we have all non-zero variables (ω, ω′) 7→ Q(ω) +Q′(ω′) Gaussian
whenever Q,Q′ ∈ Hσ, i.e. the automorphism (Tσ × Tσ, ρ) is Gaussian (with
the Gaussian space equal to Hσ +Hσ). All Gaussian automorphisms with
simple spectrum are GAG and C(Tσ) = Cg(Tσ) (see [25]) .

Each variable Q ∈ Hσ (Q : Xσ → R) can be treated as a real-valued
cocycle (for Tσ). It is called a (real) Gaussian cocycle. A Gaussian cocycle
Q is called a Gaussian coboundary if it is a coboundary Q = J − J ◦ Tσ with
J ∈ Hσ.

Remark 1.9.3. Note that it means that if f ∈ Hσ corresponds to Q, then
f(z) = ξ(z) − V (ξ)(z) = ξ(z)(1 − z) for some ξ ∈ L2(S1, σ); equivalently
f(z)/(1− z) ∈ L2(S1, σ). In this case f is called an L2(S1, σ)-coboundary.

The following result has been proved in [24].

Proposition 1.9.6 ([24]). Assume that Q ∈ Hσ. Then the following condi-
tions are equivalent:

(i) Q : Xσ → R is a coboundary;

(ii) Q : Xσ → R is a Gaussian coboundary;

(iii) e2πiQ : Xσ → S1 is a coboundary;

(iv) there exists |c| = 1 such that e2πiQ = c · ξ/ξ ◦ T for some measurable
ξ : Xσ → S1.

1.9.4 Abelian compact group extensions of GAG automorphisms
Assume that T = Tσ is a GAG. It then acts on the space (Xσ,Bσ, µσ). Let
G be a compact (metric) Abelian group and let ϕ : Xσ → G be a cocycle.
We recall that ([41], Theorem 4.8):

ϕ is ergodic if and only if for no 1 6= χ ∈ Ĝ there is a measurable solution
ζ : Xσ → S1 to the functional equation

χ ◦ ϕ = ζ ◦ T/ζ. (1.9.5)

Moreover, when Tϕ is ergodic then c ∈ S1 is an eigenvalue of Tϕ if and only
if there are χ ∈ Ĝ and ζ : Xσ → S1 measurable

χ ◦ ϕ = c · ζ ◦ T/ζ. (1.9.6)

Corollary 1.9.7. If T is a GAG and Q : Xσ → R is a Gaussian cocycle
then Te2πiQ is ergodic if and only if it is weakly mixing.
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Proof. The result follows directly from (1.9.6) and Proposition 1.9.6 (see
(iv)).

Assume that ϕ : X → G is an ergodic cocycle. Then it follows from
[25], [36] that T = Tσ is a canonical factor of Tϕ, that is, if A ⊂ Bσ ⊗ B(G)
is a factor of Tϕ such that Tϕ|A is isomorphic to T then A = Bσ ⊗ {∅, G}.
It follows that if W̃ is an endomorphism commuting with Tϕ then it has to
preserve Bσ ⊗ {∅, G} and moreover, by [36],

W̃ = Wf,V , Wf,V (ω, g) = (Wω, f(ω) + V (g)), (1.9.7)
where W ∈ Cg(T ), f : Xσ → G is measurable, and V : G → G is a
continuous epimorphism. Notice that

Wf,V ◦ Tϕ = Tϕ ◦Wf,V

implies
V ϕ(ω)− ϕ(Wω) = f(ω)− f(Tω). (1.9.8)

Remark 1.9.4. Recall also that Rudolph in [44] proved that if S ∈
Aut(Y, C, ν) is mixing, ψ : Y → G (G is compact (metric) Abelian group) is
a cocycle such that Sψ is weakly mixing, then Sψ is mixing. In particular, if
T is a mixing GAG and Q is a Gaussian cocycle which is not a coboundary
then Te2πiQ is mixing. The above result also hold for k-fold mixing.





CHAPTER 2

Strong regularity of affine cocycles

2.1 More about cocycles
2.1.1 Essential values of cocycles taking values in Abelian groups

The following lemmas show how essential values and regularity behave when
a group homomorphism is applied to a cocycle.

Lemma 2.1.1. Assume that ϕ : X → G is a cocycle and let M : G→ H be
a (continuous) group homomorphism. Then ME(ϕ) ⊂ E(Mϕ). If M is an
isomorphism, then ME(ϕ) = E(Mϕ).

Proof. Let p ∈ E(ϕ). We want to show thatMp is a period of the measurable
TMϕ-invariant functions on X ×H. Let F : X ×H → C be such a function.
Moreover, by a standard argument, we can modify F on a set of zero measure
in order to obtain a function (still denoted by F ) which is TMϕ-invariant
everywhere.

Let us fix h ∈ H and denote Fh : X × G → C by setting Fh(x, y) =
F (x, h+My). We have

(Fh ◦ Tϕ)(x, y) = Fh(Tx, y + ϕ(x)) = F (Tx, h+My +Mϕ(x))
= F (x, h+My) = Fh(x, y).

In view of (1.8.2), p ∈ E(ϕ) is a period for Fh, i.e., Fh(x, y + p) = Fh(x, y)
for a.e. (x, y). This implies that, for every h ∈ H and for a.e. (x, y),

21
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F (x, h + My + Mp) = F (x, h + My). By Fubini, this implies that there is
y ∈ G such that for a.e. (x, h), F (x, h+My +Mp) = F (x, h+My).

By invariance of the Haar measure, this implies F (x, h+Mp) = F (x, h),
for a.e. (x, y) and Mp is a period of F .

For the second part of the assertion, apply the above toMϕ andM−1.

We have the following lemma (cf. Lemma 2.9 in [8]):

Lemma 2.1.2. If ϕ is a cocycle on (X,µ, T ) with values in an Abelian l.c.s.c.
group G and H a closed subgroup of G, then the subgroup E(ϕ)/H of G/H
is such that

E(ϕ)/H ⊂ E(ϕ+H). (2.1.1)

If H ⊂ E(ϕ), then we have

E(ϕ)/H = E(ϕ+H). (2.1.2)

Moreover, ϕ∗ := ϕ+H : X → G/H is regular if and only if ϕ is regular.

Proof. Whenever H ⊂ G is a closed subgroup, (2.1.1) follows from
Lemma 2.1.1 applied to the homomorphism g ∈ G→ g +H ∈ G/H.

Now suppose that H ⊂ E(ϕ). In view of (2.1.1) it remains to show that
E(ϕ + H) ⊂ E(ϕ)/H. Take g0 + H ∈ E(ϕ + H). All we need to show is
that there exists h0 ∈ H such that g0 + h0 ∈ E(ϕ), which, by H ⊂ E(ϕ), is
equivalent to showing that g0 ∈ E(ϕ).

Take F : X × G → C which is measurable and Tϕ-invariant. Since
H ⊂ E(ϕ), F ◦ σh = F for each h ∈ H because of (1.8.2). We can defined F̃
on X × G/H such that F̃ (x, g + H) = F (x, g). Since g0 + H ∈ E(ϕ + H),
again using (1.8.2), we obtain that F̃ ◦ σg0+H = F̃ , which by H-invariance of
F means F ◦ σg0 = F and therefore g0 ∈ E(ϕ)

Assume now that ϕ∗ is regular. So there are a measurable η∗ : X → G/H
and a closed subgroup J∗ ⊂ G/H such that

ψ∗(x) := ϕ∗(x) + η∗(x)− η∗(Tx) ∈ J∗ ⊂ G/H

and Tψ∗ is ergodic on X × J∗, i.e. E(ψ∗) = J∗. Let π : G → G/H be the
canonical homomorphism and s : G/H → G a measurable selector, that is,
s(g + H) ∈ g + H for each g + H ∈ G/H. Then J := π−1(J∗) is a closed
subgroup of G. Denote η := s ◦ η∗ and set

ϕ′(x) := ϕ(x) + η(x)− η(Tx).
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Then ϕ′(x)+H = ϕ∗(x)+η∗(x)−η∗(Tx) = ψ∗(x) ∈ J∗, whence ϕ′ : X → J .
By (3.2.10), since E(ϕ′) = E(ϕ), we have

E(ϕ′)/H = E(ϕ)/H = E(ϕ+H) = E(ϕ∗) = J∗,

so E(ϕ′) = J and ϕ is regular.
Conversely, if ϕ is regular then ϕ = η − η ◦ T + ψ, where η : X → G

is measurable and ψ : X → E(ϕ). Then ϕ∗ is cohomologous to ψ + H
which takes values in E(ψ)/H = E(ϕ)/H = E(ϕ + H) by (3.2.10), so ϕ∗ is
regular.

A particular case is when H = E(ϕ). For ϕ∗ = ϕ+E(ϕ), we get: E(ϕ∗) =
{0} and ϕ is regular if and only if ϕ∗ is regular (hence a coboundary).

It can be shown that a cocycle ϕ is a coboundary if and only if E(ϕ) = {0}.
This includes in particular the fact that, if ϕ has its values in a compact group
and has no non trivial essential values, it is a coboundary.

Hence regularity is equivalent to E(ϕ∗) = {0}. In particular cocycles wi
values in compact groups, or more generally such that E(ϕ) has a compact
quotient in G, are regular.

Lemma 2.1.3. Assume that ϕ : X → G is a cocycle and let M : G → H
be a (continuous) group homomorphism. If ϕ : X → G is regular, so is
Mϕ : X → H.

Proof. If ϕ is regular, there is a cocycle ψ : X → J with values in a closed
subgroup J ⊂ G and a measurable function f : X → G such that

ϕ = f − f ◦ T + ψ

and Tψ : (x, j) → (Tx, j + ψ(x)) is ergodic on X × J . Thus Mϕ = Mf −
(Mf) ◦ T +Mψ.

We have E(ψ) = J by ergodicity of Tψ on X × J and MJ = ME(ψ) ⊂
E(Mψ) by Lemma 2.1.1. Since Mψ : X → MJ ⊂ MJ , it implies E(Mψ) ⊂
MJ . But E(Mψ) includes MJ and is closed, so it is equal to MJ .

Hence TMψ is ergodic onX×MJ , which implies the regularity ofMϕ.

The lemma gives a variant of the proof of the second part of Lemma 2.1.2.
It shows that if ϕ has a non regular quotient then it is non regular.

Remark 2.1.1. Assume that ψ : X → G1 × G2 is a cocycle of the form
ψ = (0, ψ2) with ψ2 : X → G2. Then E(ψ) = {0} × E(ψ2). Indeed, ψN(x) is
close to (g1, g2) if and only if g1 is close to zero and (ψ2)N(x) is close to g2, so
this equality follows directly from the definition of essential value. Moreover,
clearly ψ is a regular cocycle if ψ2 is regular and the converse follows from
Lemma 2.1.3.
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Finally we recall some effective tools which can be used to find essential
values of a cocycle. Given T : (X,B, µ) → (X,B, µ) and ϕ : X → G, we
denote the image of µ on G via ϕ by ϕ∗µ. We will make use of the following
essential value criterion.

Proposition 2.1.4 ([30]). Assume that T is ergodic and let ϕ : X → G be
a cocycle with values in an Abelian l.c.s.c. group G. Let (`n) be a rigidity
sequence for T . If (ϕ`n)∗µ→ ν weakly on G, then supp(ν) ⊂ E(ϕ).

Let us recall that all Abelian l.c.s.c. groups are metrizable. Let d be a
metric.

Definition 2.1.1. We say that g ∈ G is a quasi-period of a cocycle ϕ over
T with values in G, if there exist δ > 0, a rigidity sequence (`n) for T , and a
sequence 0 < εn → 0, such that

µ(An) ≥ δ, ∀n ≥ 1, where An = {x ∈ X : d(ϕ`n(x), g) < εn}.

Lemma 2.1.5. The set of quasi-periods is included in E(ϕ).

Proof. With no loss of generality we can assume that (ϕ`n)∗µ → ν where
ν is a probability measure on G. In view of Proposition 2.1.4 it suffices
to show that a quasi-period g is in the topological support of ν. Take U
a neighborhood of g, and select a smaller neighborhood g ∈ V ⊂ U so
that V ⊂ U . We have ν(U) ≥ lim sup(ϕ`n)∗(µ)(V ) = lim supµ(ϕ−1

`n
(V )) ≥

lim supµ(An) ≥ δ.

The following “lifting essential values” lemma can be applied when T is
an irrational rotation by α, ϕ below is R-valued, centered and of bounded
variation (see (2.2.1)), dealing with different subsequences of the sequence
(qn) of denominators of α.

Lemma 2.1.6. Assume that T is ergodic and let (`n) be a rigidity sequence
of T . Assume that ϕ : X → H is a cocycle such that there exists a compact
neighborhood C ⊂ H of 0 ∈ H for which ϕ`n ∈ C eventually. Let ψ : X → G
be a cocycle such that (ψ`n)∗(µ) → κ with κ a probability measure on G.
Assume that

0 6= g0 ∈ supp(κ) ∩G. (2.1.3)

Then there exists h0 ∈ H such that (h0, g0) ∈ E(Φ), where Φ := (ϕ, ψ) : X →
H ×G.
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Proof. Note first that in view of Proposition 2.1.4, g0 ∈ E(ψ). By passing to
a subsequence if necessary, we can assume that the distributions of ϕ`n and
Φ`n converge, that is

(ϕ`n)∗(µ)→ ν, (Φ`n)∗(µ)→ ρ,

where ν is a probability measure on H. In fact ν is concentrated on C (by
our standing assumption). Hence ρ is a probability measure concentrated on
C ×G. Moreover,

the projections of ρ on C and G are equal to ν and κ respectively. (2.1.4)

Using (2.1.3), for each n ≥ 1 select an open neighborhood G ⊃ Vn 3 g0
so that V n is compact, diam V n < 1/n, κ(Vn) > 0 and Vn+1 ⊂ Vn. In view
of (2.1.4), ρ(C × V n) > 0. Since C × V n is compact, there is (cn, gn) ∈
C × V n such that (cn, gn) ∈ supp(ρ) (if no such a point exists, each point of
C×V n has a neighborhood which is of measure ρ zero, a finite union of such
neighborhoods must then cover the set C × V n, a contradiction).

In this way we obtain a sequence (cn, gn), n ≥ 1, of points which are in
supp(ρ) ∩ C × V 1 and from which we can choose a converging subsequence
(cnk , gnk). Moreover, by our assumption on the diameters of Vn, (cnk , gnk)→
(c, g0), so the result follows.

In particular, by the proof of Lemma 2.1.5, Lemma 2.1.6 will apply when
g0 ∈ G is an essential value of ψ obtained as a quasi-period along a sub-
sequence of the sequence (qn) of denominators of α.

2.1.2 Essential values of cocycles taking values in Rd

In the lemmas of this subsection, Φ will stand for a cocycle with values in
Rd.

Lemma 2.1.7. Let θ = (θ1, ..., θd) ∈ Rd be a non zero essential value of Φ.
Then there is a change of basis in Rd given by a matrix M such that the
vector (1, 0, ..., 0) is an essential value of the cocycle MΦ. If θ is rational,
then M can be taken rational.

Proof. There is a change of basis in Rd with θ as the first vector of the new
basis. This can be done via a matrix M1 with rational coefficients if θ ∈ Zd.
The cocycle Φ′ = M1Φ has an essential value of the form (θ1, 0, ..., 0), where
θ1 is a positive real (a positive integer if θ is in Zd, for an adapted choice of
M1). By applying a linear isomorphism M2 (rational in the θ rational case)
we get that Φ′′ = M2M1Φ has an essential value of the form (1, 0, ..., 0).
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Lemma 2.1.8. There exist a linear isomorphism M : Rd → Rd and integers
d0, d1, d2 ≥ 0 such that if we set Hi = Rdi, i = 0, 1, 2, then

Rd = H0 ×H1 ×H2, MΦ = (ψ0, ψ1, ψ2)

with ψi : X → Hi, i = 0, 1, 2, and E(MΦ) = {0} × H1 × Γ2, with Γ2 a
discrete subgroup of H2 such that H2/Γ2 is compact. If Φ is a coboundary,
then d1 = d2 = 0.

Proof. The group E(Φ) is a closed subgroup of Rd, hence there are linearly
independent vectors v1, . . . , vd1 , w1, . . . , wd2 in Rd such that

E(Φ) = {s1v1 + . . .+ sd1vd1 + t1w1 + . . .+ td2wd2 : sj ∈ R, tk ∈ Z}.

Select y1, . . . , yd0 ∈ Rd so that together with previously chosen vj and wk we
obtain a basis of Rd. Then define a linear isomorphism M of Rd by setting

M(yi) = ei, M(vj) = ed0+j, M(wk) = ed0+d1+k,

where e1, . . . , ed is the standard basis of Rd. Since E(MΦ) = ME(Φ), we
obtain E(MΦ) = {0} ×H1 × Γ2 as required and MΦ = (ψ0, ψ1, ψ2).

Corollary 2.1.9. Let us consider the case d = 2. Let Φ = (ϕ1, ϕ2) : X → R2

be a cocycle such that E(Φ) 6= {0}. Then

Φ is regular if and only if aϕ1 + bϕ2 : X → R is regular for each a, b ∈ R.
(2.1.5)

Proof. In view of Lemma 2.1.3 we only need to prove sufficiency. Suppose
Φ is not regular. In view of Lemma 2.1.8 we obtain a linear isomorphism
M : R2 → R2 such that MΦ = (ψ0, ψi) with ψ0 : X → H0, ψi : X → Hi,
i equals either 1 or 2 and H0 6= {0} by non-regularity of Φ and Hi 6= {0}
since E(Φ) 6= {0} by hypothesis. Hence E(ψ0) = {0} and there are a and b
such that ψ0 = aϕ1 + bϕ2. But aϕ1 + bϕ2 is, by assumption, regular, so ψ0

must be a coboundary. Hence (ψ0, ψi) is cohomologous to (0, ψi) and it now
follows from Remark 2.1.1 that (ψ0, ψi) is regular, a contradiction.

Lemma 2.1.10. Let Φ : X → Rd be a recurrent cocycle and letM : Rd → Rd

be a linear isomorphism of Rd yielding the assertions of the previous lemma.
Assume additionally that the quotient cocycle Φ/E(Φ) is constant. Then ψ0 =
0. Moreover, Φ is regular.
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Proof. Since E(MΦ) = ME(Φ) = {0} ×H1 × Γ2, we have

(ψ0(x), ψ1(x), ψ2(x))/{0} ×H1 × Γ2 = const.

It follows that there is a constant b ∈ Rd0 such that ψ0 = b. However, MΦ
is recurrent as Φ is recurrent and therefore ψ0 is also recurrent. It follows
that b = 0. Now regularity follows from Remark 2.1.1 since H1 × Γ2 has a
compact quotient in H1 ×H2.

An example of a situation described by the previous lemma is the fol-
lowing: let ψ be an ergodic step cocycle with values in Z over an irrational
rotation by α ∈ (0, 1). If we modify ψ by 1[0,α) − α which is a coboundary,
then for ϕ := ψ + 1[0,α) − α we have E(ϕ) = E(ψ) = Z; here Γ2 = Z and
ϕ mod E(ϕ) = −α.

2.2 More about irrational rotation
Lemma 2.2.1. 1) Let p, q be two coprime positive integers and θ = q(α− p

q
)

with |θ| < 1
q
. When θ > 0, each interval [ j

q
, j+1

q
), 0 ≤ j ≤ q − 1 contains one

(and only one) number of the form {kα}, with 0 ≤ k ≤ q − 1. When θ < 0
the same is true for j = 1, . . . , q− 2; there are two points kα (one for k = 0)
in [0, 1

q
) and no such a point in [ q−1

q
, 1).

2) For each x ∈ T the distance between two consecutive elements of the
set

{
{x+ kα} : k = 0, . . . , q − 1

}
is < 2

q
.

3) There are at most two elements of the set
{
{x+kα} : k = 0, . . . , q−1

}
in any interval on the circle of length 1

q
(hence at most four such elements

in any interval of length 2
q
).

4) If additionally q = qn, the distance between two consecutive elements
of the set

{
{x− kα} : k = 0, . . . , q

}
is > 1

2qn .

Proof. The map k → j(k) := kp mod q is a permutation of {0, 1, ..., q − 1}.
If θ > 0, then {kα} = {k(p

q
+ θ

q
)} = j(k)

q
+ kθ

q
is at distance kθ

q
< 1

q
from j(k)

q
,

hence it is in the interval [ j(k)
q
, j(k)+1

q
). The proof is similar if θ < 0. Hence

the first assertion follows.
Assertion 2) is true for x = 0 by 1); hence, because the distance is invari-

ant by translations, it is true for any x ∈ T.
For 3), suppose that there are {x+k1α} < {x+k2α} < {x+k3α} distinct

in an interval of length < 1/q. We have `
q
≤ {k1α} < {k2α} < {k3α} < `+2

q
,

for some `. Either [ `
q
, `+1

q
) or [ `+1

q
, `+2

q
) contains two points of the set

{
{kα} :

0 ≤ k < q − 1
}
, which clearly contradicts 1).
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4) We have the following
1

2qn
≤ 1
qn + qn−1

≤ ‖qn−1α‖ ≤ ‖jα‖, ∀j, |j| < qn

and the assertion follows.

The first assertion of Lemma 2.2.1 implies easily the well-known Denjoy-
Koksma inequality: let ϕ be a centered function of bounded variation V (ϕ)
and p/q a rational number (in lowest terms) such that |α−p/q| < 1/q2, then∣∣∣∣∣∣

q−1∑
`=0

ϕ(x+ `α)
∣∣∣∣∣∣ ≤ V (ϕ). (2.2.1)

Indeed, let us consider the case θ > 0 (the proof is analogous when θ < 0).
We can assume x = 0. For j = 0, ..., q − 1, there is one and only one point
{kjα} of the set {{kα}, k = 0, ..., q − 1} in Ij := [ j

q
, j+1

q
). Given an interval

I ⊂ [0, 1) denote by V (ϕ, I) the variation of ϕ on I. Notice that if x, y ∈ I
then |ϕ(x)− ϕ(y)| 6 V (ϕ, I). Since

∫
ϕdt = 0, we have:∣∣∣∣∣∣

q−1∑
j=0

ϕ(jα)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
q−1∑
j=0

ϕ({kjα})− q
∫
ϕ(t) dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
q−1∑
j=0

q
∫ (j+1)/q

j/q
[ϕ({kjα})− ϕ(t)]dt

∣∣∣∣∣∣
≤ q

q−1∑
j=0

∫ (j+1)/q

j/q
|ϕ({kjα})− ϕ(t)| dt ≤ q

q−1∑
j=0

∫ (j+1)/q

j/q
V (ϕ, Ij)

=
q−1∑
j=0

V (ϕ, Ij) 6 V (ϕ).

Notation: For β ∈ [0, 1), L(β) denotes the set of limit points of the
sequence (‖qnβ‖)n≥1.

Another important quantity is β(n) := inf0≤|j|<qn ‖β − jα‖. We have the
following properties for β(n) and the set L(β):

Lemma 2.2.2. 1) If there exists n0 such that

β(n) = inf
0≤|j|<qn

‖β − jα‖ < 1
2‖qn+1α‖, ∀n ≥ n0, (2.2.2)

then β ∈ Zα + Z.
2) Suppose α is of bounded type.
a) If β 6∈ Zα+ Z, then there exist c > 0 and an increasing sequence (nk)

such that, for every k ≥ 1, ‖β − jα‖ ≥ c/qnk , for 0 ≤ |j| ≤ qnk .
b) If β = t

r
α+ u

s
∈ (Qα+Q) \ (Zα+Z), then there exists c > 0 such that

‖β − jα‖ ≥ c/qn, for 0 ≤ |j| ≤ qn (n ≥ 1).
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Proof. 1) For each n ≥ 1, consider the family of intervals Ijn = [{jα} −
1
2‖qn+1α‖, {jα}+ 1

2‖qn+1α‖], j = −qn + 1, ..., qn − 1.
Let n ≥ n0. If j ∈ {−qn + 1, ..., qn− 1} and j′ ∈ {−qn+1 + 1, ..., qn+1− 1}

are distinct, then the intervals Ijn and Ij
′

n+1 are disjoint, since otherwise by
‖(j′−j)α‖ ≤ 1

2‖qn+1α‖+ 1
2‖qn+2α‖ < ‖qn+1α‖, with 0 < |j′−j| < qn+qn+1 ≤

qn+2 which contradicts (1.9.4).
By (2.2.2), there is a sequence (jn)n≥n0 , such that 0 ≤ |jn| < qn and

β ∈ Ijnn for n ≥ n0.
Since β ∈ Ijnn ∩I

jn+1
n+1 , we have j0 := jn0 = jn1 = .... This implies β = {j0α}

which completes the proof of 1).

2a) By part 1) if β 6∈ Zα+ Z, it follows that there exists a sequence (nk)
such that ‖β− jα‖ ≥ 1

2‖qnk+1α‖, for 0 ≤ |j| ≤ qnk and k ≥ 1. Suppose addi-
tionally that α is of bounded type. Since ‖qnk+1α‖ and 1

qnk
are comparable,

there is c > 0 such that ‖β − jα‖ ≥ c/qnk for 0 ≤ |j| ≤ qnk .

2b) Now let β = t
r
α+ u

s
6∈ Zα+Z with t, r, u, s integers and r, s ≥ 1. Let

jn be such that εn := minj:0≤|j|≤qn ‖ trα + u
s
− jα‖ = ‖ t

r
α + u

s
− jnα‖ > 0.

We have t
r
α+ u

s
= jnα+ `n± εn, for an integer `n; hence: (rsjn− ts)α =

ru− rs`n ± rsεn. It follows

‖(rsjn − ts)α‖ ≤ rs |εn|. (2.2.3)

Suppose that rsjn − ts = 0 for infinitely many n. Then t
r

= jn and
|u−s`n| = s|εn|. Since |εn| is arbitrarily small for n large enough and u, s, `n
are integers, it follows u = s`n. Then, we find β = jnα + `n contrary to the
assumption that β is not in Zα+Z. It follows that the integers rsjn− ts are
different from zero for all n ≥ n1.

Now, α is of bounded type, so there is K > 0 such that qn+rs+1 ≤ K qn,
for every n ≥ 1. Using additionally (1.9.3) and (1.9.4), we obtain

1
2K qn

≤ 1
2qn+rs+1

≤ ‖qn+rsα‖ ≤ ‖kα‖, for 1 ≤ |k| < qn+rs+1. (2.2.4)

On the other hand, in view of (1.9.1), given any constant C > 0 we have

qn+m ≥ mqn + C (2.2.5)

for all m ≥ 1 and n large enough (indeed, it suffices to consider n so that
qn−1 ≥ C). Hence, for the integer |rsjn − ts| we have

0 < |rsjn − ts| ≤ rsqn + |t|s ≤ qn+rs+1
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whenever n is large enough. Therefore, for n large enough, by (2.2.3) and
(2.2.4), we obtain

|εn| ≥ c/qn, with c = 1
2K .

By taking c > 0 smaller if necessary, the conclusion holds for all n ≥ 1.

Lemma 2.2.3. Suppose α is of bounded type. Let B be a non-empty finite
subset of (Qβ + Qα + Q) \ (Zα + Z), where β is a real number. Then there
exist c > 0 and a strictly increasing sequence (nk) such that

∀βi ∈ B, ∀k ≥ 1, ‖βi − jα‖ ≥ c/qnk , for 0 ≤ |j| ≤ qnk .

Proof. We have B = B0 ∪B1, where

B0 = {βi; βi = ui
si
α + wi

si
with ui, wi, si ∈ Z, si 6= 0, βi 6∈ Zα + Z}

B1 = {βi; βi = vi
si
β + ui

si
α + wi

si
, with vi, ui, wi, si ∈ Z and vi, si 6= 0}.

Remark that B0 or B1 can be empty and that B = B0 if β ∈ Qα + Q.
If β 6∈ Qα + Q and B1 is not empty, we apply Lemma 2.2.2 to β′ :=

(∏ v`)β. There are a positive constant c and a sequence (nk) such that

‖β′ − jα‖ ≥ c

qnk
, 0 ≤ |j| < qnk .

Let M = (max s`)(
∏
v`), Mi = si

∏
` 6=i v`. We have vi

si
β = β′

Mi
.

Since Li := Mi
ui
si

and Mi
wi
si

are integers, we have for j such that 0 ≤
|Mij − Li| < qnk :

Mi

∥∥∥∥visiβ + ui
si
α + wi

si
− jα

∥∥∥∥ ≥ ∥∥∥∥Mi
vi
si
β −Mi

(
jα− ui

si
α− wi

si

)∥∥∥∥
= ‖β′ − (Mij − Li)α‖ ≥

c

qnk
.

We have Mi|j| + |Li| ≤ M |j| + L, with L := max |Li|. As α is of bounded
type, there are r and K such that Mqn−r + L ≤ qn ≤ Kqn−r, for all n ≥ 1.
This implies, simultaneously for every i:∥∥∥∥visiβ + ui

si
α + wi

si
− jα

∥∥∥∥ ≥ 1
Mi

‖β′ − (Mij − Li)α‖ ≥
c

MK

1
qnk−r

, if |j| < qnk−r.

For βi in B0, if this subset is non empty, by the part 2b) of the previous
lemma any subsequence of (qn) is “good”.

We conclude that the subsequence (qnk−r)r≥1 fulfills the assertion of the
lemma.
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Remark 2.2.1. As the proof of Lemma 2.2.3 shows, the result is true for any
change of the part belonging toQα+Q for the elements of B1 (that is, we may
replace ui

si
α+ wi

si
, for i = 1, ..., t, by a different element of Qα+Q). However,

each time we change this part, we also change the resulting subsequence
(qnk).

Remark 2.2.2. When α is not of bounded type, the set K(α) = {β ∈ R :
limn ‖qnβ‖ = 0} is an uncountable additive subgroup of R.

Nevertheless, if limn ‖qnβ‖ = 0 and β 6∈ Zα + Z, the rate of convergence
toward 0 is moderate, as shown by the following lemma (see [6], [22], [21],
[7]).

Lemma 2.2.4. If there exists n0 such that ‖qnβ‖ ≤ 1
4qn‖qnα‖ for n ≥ n0,

then β ∈ Zα + Z. In particular, if α is of bounded type and β satisfies
limn ‖qnβ‖ = 0, then β ∈ Zα + Z.

2.3 Step cocycles over an irrational rotation
In this section, we study the regularity of a step Rd-valued cocycle Φ =
(ϕ1, . . . , ϕd) over an irrational rotation T : x→ x+α. For such a cocycle the
coordinate R-valued cocycles ϕj are integrable and we will constantly assume
that

∫ 1
0 ϕ

j dµ = 0 with µ = mT the Lebesgue measure on T1, for j = 1, . . . , d.

2.3.1 Representations of step cocycles
The coordinates of Φ = (ϕ1, . . . , ϕd) can be (uniquely) represented as follows:

ϕj(x) =
∑
i

ti,j (1Ii,j(x)− µ(Ii,j)), (2.3.1)

where, for j = 1, . . . , d, {Ii,j} is a finite family of disjoint intervals of [0, 1)
(covering [0, 1) and maximal on which ϕj is constant) and ti,j ∈ R. Clearly,
when d ≥ 1 is fixed, the family of step cocycles form a linear space over R.

Setting βi,j = µ(Ii,j) and ψi,j = 1Ii,j − βi,j, we have ψi,jn (x) =∑n−1
k=0 1Ii,j(x+kα)−nβi,j; hence the cocycle ϕjn can be written in the following

form:
ϕjn(x) =

∑
i

ti,j ψ
i,j
n (x) =

∑
i

ti,j (ui,j(n)(x)− {nβi,j}), (2.3.2)

with the notation (which is not a cocycle expression)

ui,j(n)(x) := ψi,jn (x) + {nβi,j} =
n−1∑
k=0

1Ii,j(x+ kα)− [nβi,j] ∈ Z. (2.3.3)
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Remark 2.3.1. Without loss of generality, we can assume that the difference
between any two discontinuity points of the cocycle Φ is never a multiple of α
(modulo 1). Indeed, if β and β′ are two discontinuity points of a component
of Φ such that β′−β ∈ Zα+Z, we can suppress one of them by adding to Φ
a coboundary, without changing the ergodic properties of Φ (we use the fact
that 1[β,β′)(x)− (β′ − β) is coboundary31). In particular, after modification,
the lengths µ(Ii,j) in the representation of the new cocycle are not in Zα+Z.

2.3.2 Rational step cocycles
Assume that ϕ : T → R is a zero mean step cocycle with its unique repres-
entation (2.3.1) of the form

ϕ =
m∑
i=1

ti(1Ii − µ(Ii)). (2.3.4)

Definition 2.3.1. We say that ϕ is rational if there are ci ∈ Q, i = 1, ...,m
and β ∈ R such that

ϕ =
m∑
i=1

ci1Ii − β. (2.3.5)

Lemma 2.3.1. Assume that ϕ : T → R is a (zero-mean) step cocycle. The
following conditions are equivalent:

(i) ϕ is rational.
(ii) There exists w ∈ R such that in the unique representation (2.3.4) of

ϕ we have ti ∈ w + Q for i = 1, ...,m.
(iii) ϕ takes values in a coset of Q.
In particular, the family of rational cocycles is a linear space over Q.

Proof. (i)⇒(ii) By (2.3.4), ϕ = ∑m
i=1 ti1Ii − γ, where γ = ∑m

i=1 tiµ(Ii). For
x ∈ Ii we have

ci − β = ϕ(x) = ti − γ,

so ti ∈ (γ − β) + Q for i = 1, ...,m.
31Indeed, we have 1[1−α,1)(x)− α = j(x)− j(x+ α) with j(x) = {x}, then for integers

k, s

1[1−{kα+s},1)(x)− {kα+ s} = 1[1−{kα},1)(x)− {kα}
= j(x)− j(x+ kα) = jk(x)− jk(x+ α).

The general case is obtained using the obvious fact that other rotations commute with
Tx = x+ α.
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(ii)⇒(iii) For some ri ∈ Q, i = 1, ...,m and x ∈ [0, 1) we have

ϕ(x) =
m∑
i=1

(w + ri)(1Ii(x)− µ(Ii)) =
m∑
i=1

ri1Ii(x) + (w − γ) ∈ (w − γ) + Q.

(iii)⇒(i) Take the unique representation (2.3.4) of ϕ: ϕ = ∑m
i=1 ti1Ii − γ

with γ = ∑m
i=1 tiµ(Ii). By assumption, there exists η ∈ R such that ϕ(x) ∈

η + Q for each x ∈ [0, 1). Thus, for x ∈ Ii we have

ti − γ = ϕ(x) = η + ri

for some ri ∈ Q. Whence ti ∈ (γ + η) + Q for i = 1, ...,m.
The latter assertion follows directly from (iii).

Suppose that ϕ is rational with a representation (2.3.5) and let ϕ =∑m
i=1 c

′
i1Ii−β′ (with c′i ∈ Q) be another rational representation. Then by (iii)

of Lemma 2.3.1 it follows that β − β′ ∈ Q, in other words, in the rational
representation (2.3.5) the coset β + Q ∈ R/Q is unique. By β(ϕ) we will
denote that coset (in fact, less formally it will be the number β in (2.3.5)
understood modulo Q). Note that

ϕ(x) ∈ β(ϕ) for all x ∈ T.

With this in mind we have immediately the following observation:

Lemma 2.3.2. Assume that ϕ1, ..., ϕd : T → R are rational step cocycles.
Assume moreover that aj ∈ Q for j = 1, ..., d and set ϕ = ∑d

j=1 ajϕ
j. Then

β(ϕ) =
d∑
j=1

ajβ(ϕj).

Now, let d ≥ 1.

Definition 2.3.2. We say that a step cocycle Φ : T→ Rd is a rational step
cocycle if its coordinates ϕj are rational, i.e.:

ϕj =
∑
i

ci,j1Ii,j − βj, (2.3.6)

where the coefficients ci,j are rational numbers and βj is such that
∫ 1
0 ϕ

jdµ =
0, j = 1, ..., d.



34 2. Strong regularity of affine cocycles

In this case, by replacing Φ by its non-zero integer multiple so that all ci,j
are integers (recall that a non-zero multiple of a cocycle Φ shares its ergodic
properties with Φ) we obtain:

ϕjn(x) = uj(n)(x)− {nβj}, n ≥ 1, (2.3.7)

where the functions uj(n) have values in Z.
Below we write βj = βj(ϕj) = βj(Φ) (in the representation (2.3.6)) to

stress the dependence of the βj’s on the cocycle Φ. The number of discon-
tinuities of Φ is denoted D(Φ).

We denote by L(βj) the set of limit values of the sequence (‖qnβj‖ )n≥1.
Observe that if L(βj) 6= {0}, there exists a sequence (nk) such that
limk{qnkβj} ∈ (0, 1). Let L := maxi,j V (ψi,j) in case (2.3.2), or L :=
maxj V (ϕj) in case (2.3.7), where V is the variation.
F will denote the interval of integers

F = {` ∈ Z : |`| ≤ L+ 1}. (2.3.8)

From (2.2.1), (2.3.7) and (2.3.3), it follows that:

uj(qn)(x) ∈ F , ui,j(qn)(x) ∈ F . (2.3.9)

Lemma 2.3.3. Let Φ be a rational step cocycle. If L(βj0) 6= {0} for some
j0, then E(Φ) contains a rational vector θ = (θ1, ..., θd) with θj0 6= 0.

Proof. By multiplying Φ by an integer if needed, we can use (2.3.7) with
uj(n)(x) ∈ Z. We can select a subsequence (nk) so that ({qnkβj})k≥1 converges
for all j = 1, . . . , d to a limit denoted δj, with δj0 ∈ (0, 1). Taking into
account (2.3.9), denote for (`1, . . . , `d) ∈ Fd

Ak,`1,...,`d = {x ∈ T : uj(qnk )(x) = `j, j = 1, . . . , d}.

Note that, for each k ≥ 1, {Ak,`1,...,`d : (`1, . . . , `d) ∈ Fd} is a partition of
T. By passing to a further subsequence if necessary, we can assume that
µ (Ak,`1,...,`d) → γ`1,...,`d when k → ∞, for each (`1, . . . , `d) ∈ Fd. In view
of (2.3.8), (2.3.7) and the fact that

∫
ϕj dµ = 0, we have∑

`∈F
` µ

(
∪`1,...,`j0−1,`j0+1,...,`d∈F Ak,`1,...,`j0−1,`,`j0+1,...,`d

)
=

∫ 1

0
uj0(qnk )(x) dx =

∫ 1

0

(
ϕj0qnk

(x) + {qnkβj0}′
)
dx = {qnkβj0}′ → δj0 .

It follows that∑
`∈F

`
∑

`1,...,`j0−1,`j0+1,...,`d∈F
γ`1,...,`j0−1,`,`j0+1,...,`d = δj0 (2.3.10)
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with δj0 ∈ (0, 1). Hence there are ` 6= `′ such that∑
`1,...,`j0−1,`j0+1,...,`d∈F

γ`1,...,`j0−1,`,`j0+1,...,`d > 0

∑
`1,...,`j0−1,`j0+1,...,`d∈F

γ`1,...,`j0−1,`
′,`j0+1,...,`d > 0;

Indeed otherwise,∑`1,...,`j0−1,`j0+1,...,`d∈F γ`1,...,`j0−1,`0,`j0+1,...,`d = 1 for some `0 ∈
F and the other sums are 0, so that the left hand side of (2.3.10) is an integer,
a contradiction. This implies

γ`1,...,`j0−1,`,`j0+1,...,`d > 0, γ`′1,...,`′j0−1,`
′,`′j0+1,...,`

′
d
> 0,

for some d−1-uples (`1, . . . `j0−1, `j0+1, . . . , `d) and (`′1, . . . `′j0−1, `
′
j0+1, . . . , `

′
d).

By Lemma 2.1.5 it follows that

(`1 − δ1, . . . , `j0−1 − δj0−1, `− δj0 , `j0+1 − δj0+1, . . . , `d − δd) ∈ E(Φ),
(`′1 − δ1, . . . , `

′
j0−1 − δj0−1, `

′ − δj0 , `′j0+1 − δj0+1, . . . , `
′
d − δd) ∈ E(Φ).

Thus (`1−`′1, . . . , `−`′, . . . , `d−l′d) ∈ E(Φ) with `−`′ 6= 0 which completes
the proof (for the initial Φ we have to divide by an integer and obtain a non
zero essential value with rational coordinates).

Theorem 2.3.4. Let Φ be a rational step cocycle with values in Rd. There
are d(Φ), 0 ≤ d(Φ) ≤ d, and a change of basis of Rd given by a rational
matrix M such that MΦ = (ϕ̂1, ..., ϕ̂d(Φ), ϕ̂d(Φ)+1, ..., ϕ̂d) satisfies:

1) E(MΦ) contains the subgroup generated by

(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 1︸ ︷︷ ︸
d(Φ)

, 0, ..., 0),

2) the cocycle Φ̂ = (ϕ̂d(Φ)+1, ..., ϕ̂d) is a rational cocycle like (2.3.6) and
satisfies limn ‖qnβj(Φ̂)‖ = 0 for j = d(Φ) + 1, . . . , d.

Proof. We will apply successively Lemmas 2.3.3, 2.1.7 and 2.3.2. If L(βj) =
{0} for all j = 1, . . . , d, we put d(Φ) = 0. Suppose not all L(βj) are equal
to {0}, say L(β1) 6= {0}. Then by Lemma 2.3.3, there is a rational vector
θ = (θ1, . . . , θd) ∈ E(Φ) with θ1 6= 0.

Take a linear (rational) isomorphism M1 of Rd, so that M1(θ) = e1,
where e1 = (1, 0, ..., 0) and considerM1(Φ) = (ϕ′1, . . . , ϕ′d). The step cocycles
ϕ′2, . . . , ϕ

′
d have their own representation (2.3.6) with β′j instead of βj. We

now look at L(β′j) for j = 2, . . . , d. If all these sets are equal to {0}, we set
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d(Φ) = 1 and the proof is finished. Suppose not all L(β′j) for j = 2, . . . , d are
equal to zero, say L(β′2) 6= 0. We apply Lemma 2.3.3 to M1(Φ) and obtain
θ′ = (θ′1, θ′2, . . .) ∈ E(M1Φ) with θ′2 6= 0. Note that e1 and θ′ are linearly
independent. Then consider a linear (rational) isomorphism M2 of Rd that
fixes e1 and sends θ′ to e2 and set

M2(M1(Φ)) = (ϕ′1, ϕ′′2, . . . , ϕ′′d)

(this cocycle has e1 and e2 as its essential values).
Again, these new cocycles (except for ϕ′1) have their own representa-

tion (2.3.6) with β′′j for j = 2, . . . , d. We now look at L(β′′j ) for j = 3, . . . , d.
If the sets L(β′′j ), j = 3, . . . , d, are equal to {0} we set d1 = 2 and the
proof is complete. If not, say L(β′′3 ) 6= {0}, we obtain a rational vector
θ′′ = (θ′′1 , θ′′2 , θ′′3 , . . .) ∈ E(M2(M1(Φ))) with θ′′3 6= 0. Then consider a (ra-
tional) linear isomorphism M3 : Rd → Rd fixing e1, e2 and sending θ′′3 into e3
and pass to the cocycle M3(M2(M1(Φ))). We complete the proof in finitely
many steps.

Reduction in the bounded type case

If we find d(Φ) = d in Theorem 2.3.4, then the group E(Φ) contains a
subgroup with compact quotient in Rd and hence the cocycle Φ is regular.
This is the situation of the following theorem:

Theorem 2.3.5. Let α be of bounded type. Let (β1, ..., βd) be such that there
is no non trivial rational relation between 1, α, β1, ..., βd. Then the cocycle
Φ = (1[0,βj) − βj)j=1,...,d is regular. Every step cocycle ϕ with discontinuities
at {0, β1, ..., βd} and dimension d′ ≤ d is regular.

Proof. We use the notation of Theorem 2.3.4. If d(Φ) < d, then we have
limn ‖qnβj(Φ̂)‖ = 0 for j = d(Φ) + 1, . . . , d. As α is of bounded type, taking
into account Lemma 2.3.2 and Lemma 2.2.4, we find a non trivial rational
relation between the numbers βj(Φ̂). Since the changes of basis are given
by rational matrices M , this gives a non trivial rational relation between
1, α, β1, ..., βd, contrary to the assumption of the theorem. Therefore d(Φ) =
d and the cocycle Φ is regular. For the second statement, observe that, if
d′ ≤ d, ϕ is the image of Φ by a linear map (c.f.( 2.3.1)). It is regular if Φ is
regular by Lemma 2.1.3.

Remark 2.3.2. a) Application to non rational cocycles
The previous proof is based on the concept of rational cocycle, but applies

even to non rational cocycle.
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As an illustration of the result, let us consider the cocycle: ϕ = θ1[0,β) −
1[0,θβ), with (1, α, β, θβ) rationally independent, θ 6∈ Q and β, θβ ∈ [0, 1).
This cocycle is not rational, but obtained from the cocycle Φ = (1[0,β) −
β,1[0,θβ) − θβ) by the map (y1, y2) → θy1 − y2. For α of bounded type, Φ
and therefore also ϕ are regular (Theorem 2.3.5).

b) In the bounded type case, the reduction given by Theorem 2.3.4 reduces
to a cocycle of the form (2.3.6) such that βj ∈ Zα+Z for all j = d1 + 1, ..., d.
We can even obtain βj = 0 by using the identity: α = 1[1−α,1)(x) + j(x +
α)− j(x), for 0 < α < 1, where j(x) = {x}.

Reduction in the unbounded type case, ‖qnβj‖ → 0

If ‖qnβj‖ → 0, ∀j and βj 6∈ Zα+ Z (a situation which can occur only for
α not of bounded type), the previous method of reduction cannot be applied.
Nevertheless, there is a first step reduction, based on another method.

Lemma 2.3.6. Let Φ be a step function with D = D(Φ) points of discon-
tinuity. We have µ(Aq,`(Φ)) > 1− 2Dqε, with ε = `‖qα‖, where

Aq,`(Φ) :=
⋂

1≤s≤`
{x ∈ T : Φq(x) = Φq(x+ sqα)}, `, q ≥ 1.

Proof. Let ∆ be the set of discontinuities of Φ. If x 6∈ Aq,`(Φ), we can find
s, 1 ≤ s < `, and j, 0 ≤ j < q, such that Φ(x + jα) 6= Φ(x + jα + sqα).
This implies that Φ has a discontinuity at δ on the circle between x+ jα and
x+ jα+ sqα, and therefore x belongs to the interval (δ− jα− ε, δ− jα+ ε)
because sup1≤s≤` ‖sqα‖ ≤ `‖qα‖. Now, the complement of Aq,`(Φ) is included
in the set ⋃0≤j<q, t∈∆ B(t− jα, ε), whose measure is less than 2Dqε.

Proposition 2.3.7. Let Φ = (1[0,βj)− βj, j = 1, ..., d). Suppose βj 6∈ Zα+Z
and ‖qnβj‖ → 0, ∀j, then E(Φ) contains a non zero vector in Zd or a non
discrete subgroup of Rd.

Proof. For n ≥ 1, we can write (cf. 2.3.7): ϕjn(x) = ũj(n)(x)− ε‖nβj‖, where
ε = ±1 and ũj(n) is the integer valued function

ũj(n) = uj(n) if {nβj} = ‖nβj‖, ũj(n) = uj(n) + 1 if {nβj} = 1− ‖nβj‖.

a) If µ({x ∈ T : ũj0(qn)(x) = 0}) 6→ 1 for some j0, the proof is similar to
the proof of Lemma 2.3.3: by passing to a subsequence if necessary to ensure
the convergence of all components ϕjqn , we find that Φ has a quasi-period
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(ρ1, ρ2, ..., ρd), with ρj0 6= 0. It follows that E(Φ) contains a non-zero vector
in Zd.

b) Now, we can assume limn µ({x ∈ T : ũj(qn)(x) = 0}) = 1, for every j.
By Lemma 2.2.4 there is a sequence (nk) such that ‖qnkβ1‖ > 1

4qnk‖qnkα‖.
We put Lk = [η/‖qnkβ1‖], k ≥ 1, where η is such that η < 1

16D .
There is at least one index j0 such that, infinitely often, ‖qnkβj0‖ is the

biggest value of the set {‖qnkβj‖, j = 1, ..., D(Φ)}. Hence for j0 and an
infinite subsequence, still denoted (nk), we have

0 < ‖qnkβj‖ ≤ ‖qnkβj0‖, ∀j.

In particular, we have ‖qnkβj0‖ ≥ 1
4qnk‖qnkα‖.

Using the notation and the assertion of Lemma 2.3.6, we have

µ(Aqnk ,Lk(Φ)) > 1− 2DqnkLk‖qnkα‖ ≥ 1− 8Dη ≥ 1
2 .

Moreover, using the definition of Aqnk ,Lk(Φ), for x ∈ Aqnk ,Lk(Φ) and ` ≤ Lk,
we have

Φ`qnk
(x) = `Φqnk

(x) = (`ũj(qnk)
(x)− ε`‖qnkβj‖, j = 1, ..., d)

with ε = ±1. Let ρ ∈ (0, η). Put `k := [ρ/‖qnkβj0‖] < η/‖qnkβj0‖ ≤ Lk + 1.
We have, for x ∈ Aqnk ,Lk(Φ), outside of a set of measure tending to 0,

ϕj0`kqnk
(x) = `kϕ

j0
qnk

(x) = `kũ
j0
(qnk)

(x)−ε`k‖qnkβj0‖ = ±[ρ/‖qnkβj0‖] ‖qnkβj0‖ → ±ρ.

For the other components j 6= j0, outside of a set of measure tending to 0,
we have on Aqnk ,Lk(Φ),

ϕj`kqnk
(x) = `kϕ

j
qnk

(x) = `kũ
j
(qnk )(x)− ε`k‖qnkβj‖ = ±‖qnkβj‖ [ρ/‖qnkβj0‖].

The above quantity is bounded, since ‖qnkβj‖ [ρ/‖qnkβj0‖] ≤
ρ ‖qnkβj‖/‖qnkβj0‖ ≤ ρ. Passing to a subsequence still denoted (nk) if neces-
sary, we obtain that outside of a set of measure tending to 0, on Aqnk ,Lk(Φ)
the sequence (Φ`k qnk

(x)) converges to the vector (ρ1, ρ2, ..., ρd).
Now, the measure of Aqnk ,Lk(Φ) is bounded away from 0 and the sequence

(`kqnk) is a rigidity sequence for T , since `k ≤ Lk + 1 and

Lk‖qnkα‖ ≤ η
‖qnkα‖
‖qnkβ1‖

≤ 4 η

qnk
→ 0.

It follows that, for an arbitrary ρ ∈ (0, η), E(Φ) contains a vector
(ρ1, ρ2, ..., ρd) ∈ E(Φ), with ρj0 = ρ. It follows that E(Φ) includes a non-
discrete subgroup of Rd.
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Remark 2.3.3. Lemma 2.3.3 and Proposition 2.3.7 show that, in dimension
1, for Φ = 1[0,β]−β, if β 6∈ Zα+Z, the group E(Φ) contains at least a positive
integer.

2.3.3 Well separated discontinuities, clusters of discontinuities
The previous method was based on Diophantine properties of the values of
the integrals for rational cocycles (c.f. (2.3.1)). In this subsection we present
results relying on diophantine properties of the discontinuities of the cocycle.
We give sufficient conditions for regularity of the cocycle defined by a step
function Φ : T→ Rd with integral 0.

The set of discontinuities of Φn(x) = ∑n−1
k=0 Φ(x+kα) is Dn :=

{
{xi−kα} :

1 ≤ i ≤ D, 0 ≤ k < n
}
. We assume that the points xi − kα mod 1, for

1 ≤ i ≤ D, 0 ≤ k < n, are distinct. The jump of Φ at xi is σi = σ(xi) =
Φ(x+

i )− Φ(x−i ). A discontinuity of the form {xi − kα} is said to be of type
xi.

By Lemma 2.2.1, any interval of the circle of length ≥ 2/qn contains at
least one point of the set

{
{xi − kα}, k = 0, . . . , qn − 1

}
, hence at least one

discontinuity of Φqn of type xi for each xi ∈ D.

Well separated discontinuities

We write Dn = {γn,1 < ... < γn,Dn < 1} and γn,Dn+1 = γn,1, where, for
1 ≤ ` ≤ Dn, the points γn,` run through the set of discontinuities Dn in the
natural order.
Definition 2.3.3. The cocycle is said to have well separated discontinuities
(wsd), if there is c > 0 and an infinite set Q of denominators of α such that

γq,`+1 − γq,` ≥ c/q, ∀q ∈ Q, ` ∈ {1, . . . , Dq}. (2.3.11)

This condition is similar to Boshernitzan’s condition ([5]) for interval
exchange transformations. The result below extends an analogous statement
when Φ takes values in Zd (see [9]).
Theorem 2.3.8. Let Φ be a zero mean step function. If Φ satisfies the wsd
property (2.3.11), then the group E(Φ) includes the set {σi : i = 1, . . . , D}
of jumps at discontinuities of Φ. Moreover, Φ is regular.
Proof. Let us consider Φq(x) for q ∈ Q. By (2.3.2) and (2.3.9), we can write,
with ui,j(q)(x) in a finite fixed set of integers F ,

Φq = (ϕjq)j=1,...,d with ϕjq(x) =
∑
i

ti,j u
i,j
(q)(x)−

∑
i

ti,j {qβi,j}.
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Let θ(q) := (θj,q, j = 1, ..., d) with θj,q := −∑i ti,j {qβi,j}. We can assume
that the limit θ := lim

q→∞, q∈Q
θ(q) exists. The set of values of Φq for q ∈ Q is

included in R+ θ(q) where R is the finite fixed set of vectors {(∑i ti,jki,j, j =
1, ..., d) : ki,j ∈ F}.

Let Iq be the partition of the circle into the intervals of continuity of Φq,
Iq,` = [γq,`, γq,`+1), 1 ≤ ` ≤ Dq. With the constant c introduced in (2.3.11),
let Jq,` ⊂ T be the union of L := b2/cc+1 consecutive intervals in Iq starting
with Iq,`. By (2.3.11) every Jq,` has length ≥ 2/q, thus contains an element
of the set

{
{xi − sα}, s = 0, . . . , q − 1

}
for each xi.

Therefore, for every jump σi of Φ, there is v ∈ R and two consecutive
intervals I, I ′ ∈ Iq, with I ∪ I ′ ⊂ Jq,`, such that the value of Φq is v+ θ(q) on
I and v + θ(q) + σi on I ′.

Given i ∈ {1, ..., D}, we denote Hq(σi) the family of intervals I ∈ Iq such
that the jump of Φq at the right endpoint of I is σi. Since each interval Jq,`
contains an interval I ∈ Hq(σi), the cardinality of Hq(σi) is at least qD

L
.

Fix additionally v ∈ R and let Aq(σi, v) be the set of intervals I ∈ Hq(σi)
such that Φq(x) = v + θ(q) on I. Let A′q(σi, v) be the set of intervals I ′ ∈ Iq
adjacent on the right to the intervals I ∈ Aq(σi, v).

Let Aq(σi, v) be the union of intervals I ∈ Aq(σi, v) and A′q(σi, v) the
union of intervals I ′ ∈ A′q(σi, v). The value of Φq is v + θ(q) on Aq(σi, v) and
v + θ(q) + σi on A′q(σi, v).

There is v0 ∈ R and an infinite subset Q0 of Q such that, for q ∈ Q0,

|Aq(σi, v0)|, |A′q(σi, v0)| ≥ |Hq(σi)|
|R|

≥ qD

L|R|
. (2.3.12)

By (2.3.11) and (2.3.12), we have µ (Aq(σi, v0)) , µ
(
A′q(σi, v0)

)
≥ Dc2

(2+c)|R| .
Thus v0 +θ and v0 +θ+σi are quasi-periods, hence, by Lemma 2.1.5 essential
values. Since E(Φ) is a group, σi is an essential value. Therefore E(Φ) includes
the group generated by the jumps of Φ.

Finally, notice that the quotient cocycle Φ/E(Φ) is a continuous step
cocycle, hence is constant. Therefore, the regularity of Φ follows from
Lemma 2.1.10.

For Φd :=
(
1[0,βj ]−βj, j = 1, ..., d

)
with βi 6= βj whenever i 6= j, the jump

of Φd is (1, ..., 1) at 0 and (0, ..., 0,−1, 0, ..., 0) at βj (−1 stands at the j-th
coordinate), j = 1, . . . , d. If the wsd property is satisfied, the group E(Φ)
includes Zd. Therefore the cocycle Φd is regular whenever the wsd property
holds.

In view of Lemma 2.2.3 and Theorem 2.3.8, we obtain the following result
(where the case β ∈ Zα + Z can be treated directly).
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Corollary 2.3.9. Let α be of bounded type. Let β be a real number.
1) The cocycle (1[0, r

s
)(.)− r

s
, 1[0, r

s
)(.+β)− r

s
) is regular for every rational

number r
s
∈ (0, 1).

2) If r1
s1
, ..., rd

sd
are rational numbers such that 0 < ri

si
β < 1, then, for every

real numbers t1, ..., td, the cocycle ϕ = ∑
i ti1[0, ri

si
β) − β

∑
i ti

ri
si

is regular.

Clusters of discontinuities

For a subset C of discontinuities of Φ, we denote σ(C) = ∑
xi∈C σ(xi)

the corresponding sum of jumps of Φ. The number of discontinuities of Φ is
D = D(Φ). The following result can be useful when the discontinuities are
not well separated.

Theorem 2.3.10. Suppose that there are two discontinuities xi0 , xj0 of Φ
and a subsequence (qnk) such that for a constant κ > 0 we have

qnk‖(xi0 − xj0)− rα‖ ≥ κ, ∀ |r| < qnk . (2.3.13)

Then, if the sum σ(C) is 6= 0 for each non-empty proper subset C of the set
of discontinuities of Φ, then Φ has a non trivial essential value.

Proof. By Lemma 2.2.1 any interval of length 2/qn on the circle contains at
least one discontinuity of each type xi and at most 4 such discontinuities,
therefore at most 4D(Φ) discontinuities of Φqn .

Consider the sequence Q = (qnk) of denominators satisfying (2.3.13). On
the circle T we will deal with families of disjoint intervals of length 4/qnk . In
fact, we consider families of the form

{
I

(k)
j : j ∈ Jk ⊂ {0, 1, ..., qnk−1}

}
with

I
(k)
j = I

(k)
0 +{−jα}, where I(k)

0 = [0, 4/qnk ] and Jk is such that its cardinality
satisfies |Jk| ≥ δ1qnk for a fixed positive constant δ1.

The number of different “patterns of discontinuities” (i.e. consecutive
types of discontinuities) which can occur altogether in these intervals is fi-
nite (indeed, the length of a pattern of discontinuity is bounded by 8D(Φ)).
There are an infinite subsequence of Q (still denoted by Q) and a family of
intervals I(k)

0 + {−jα}, j ∈ J ′k with |J ′k| ≥ δ2qnk for a fixed positive constant
δ2 (therefore with a total amount of measure bounded away from 0) such that
the same pattern of discontinuities occurs in each interval of the family. For
illustration, if the cocycle has 4 discontinuities x1, x2, x3, x4, we can have for
instance in each interval the pattern (x1, x3, x4, x3, x2, x1, x2, x4), correspond-
ing in a given interval to the “configuration” (a sequence of discontinuities) of
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the form ({x1−`j,1α}, {x3−`j,2α}, {x4−`j,3α}, {x3−`j,4α}, {x2−`j,5α}, {x1−
`j,6α}, {x2 − `j,7α}, {x4 − `j,8α}).

Now, by taking a further subsequence of Q if necessary, we will assure
a convergence at scale 1/qnk for the discontinuities in I

(k)
j . More precisely,

observe that if {xi − `α} ∈ I
(k)
j , then {xi − `α} − {−jα} ∈ I

(k)
0 . Hence

{xi− (`− j)α} is in I(k)
0 and therefore it belongs to the set

{
{xi−uα} : |u| <

qnk
}
∩ I(k)

0 . Notice that this set
{
{xi − uα} : |u| < qnk

}
∩ I(k)

0 has at least 2
elements and has no more that 8 elements and it does not depend on j (when
k changes, the set J ′k does and so j are different for different k, however the
common shift, namely the shift by jα, leads to points which will be common
for all j ∈ J ′k; on the other hand r runs over a fixed set as the patterns of
discontinuities are the same regardless k and j). Therefore we can write it
explicitly as

{
{xi − unk,i,rα}

}
.

We can extract a new subsequence of Q (for which we still keep the
same notation Q = (qnk)) such that for each {xi − unk,i,rα} the sequence
qnk{xi − unk,i,rα} converges to a limit yi,r ∈ [0, 4] when k → ∞. This is
possible, since there is a finite number of such points in I(k)

0 for each nk.
Therefore the configurations of discontinuities in the intervals I(k)

j for
j ∈ J ′k are converging at the scale 1/qnk , i.e. after applying the affinities
x→ qnk(x−{−jα}). We can group the discontinuities (of type) xi according
to the value of the limit yi,r.

We call “clusters” the subsets of discontinuity points in I
(k)
j with the

same limit at the scale qnk (hence, such that the corresponding limits yi,r in
[0, 4] coincide). Observe that two discontinuities of the same type xi are at
distance ≥ 1

2qnk
by the point 4) of Lemma 2.2.1 and therefore are not in the

same cluster: a cluster contains at most one discontinuity of a given type xi.
In view of (2.3.13), the number of elements in a cluster is strictly less than
D(Φ) the number of discontinuities of Φ.

By passing once more to a subsequence of Q (still denoted by Q = (qnk))
if necessary, we extract a sequence of families of disjoint “good” intervals of
length 4/qnk with the same configuration of clusters inside the intervals of
a family. There are at least three different clusters in each “good” interval
(since for an interval of length 4/qnk a given type of discontinuity occurs at
least twice and must occur in different clusters as shown above, moreover the
number of elements in a cluster is at most D(Φ) − 1). The clusters in each
interval are separated by more than c/qnk . As in the proof of Theorem 2.3.8,
the values of the cocycle at time qnk are v + θ(qnk ) with v in a fixed finite set
and (θ(qnk )) a converging sequence.
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For k large, clusters of discontinuities are separated by intervals of order
c1/qnk for a fixed positive constant c1 and there are at least 3 clusters in
a “good” interval I(k)

j . The number of intervals in the families is greater
than a fixed fraction of qnk . It follows that, under the assumption that the
sum of jumps σ(C) is 6= 0 for each non-empty proper subset C of the set of
discontinuities of Φ, the cocycle at time qnk is close to a non zero constant
on a set which has a measure bounded away from 0.

Therefore there Φ has a non trivial quasi-period, hence a non trivial finite
essential value.

Examples of application of Theorem 2.3.10
Recall that by Remark 2.3.1, if x1, . . . , xD are all discontinuities of a step

cocycle Φ, then for i 6= j we can assume that xi − xj is not a multiple of
α modulo 1. Assume that α is of bounded type. Then, fixing i0 6= j0 and
using Lemma 2.2.3 to select a subsequence (qnk) so that (2.3.13) holds for a
constant κ > 0, the assumption of the theorem are fulfilled.

Example 1: cocycle with 3 discontinuities
Let α be an irrational number of bounded type. Let ϕ be a scalar cocycle

with 3 effective discontinuities 0, β, γ. The sum of jumps for the 3 discon-
tinuities is 0, and for subsets of 1 or of 2 discontinuities it is always non
zero. If β (resp. γ) is not in Zα+Z, by Lemma 2.2.3 there are subsequences
of denominators along which the discontinuities of type β (resp. γ) belong
to clusters which reduce to a single discontinuity or to two discontinuities.
Therefore, by Theorem 2.3.10 the group of finite essential values does not
reduce to {0}.

Example 2: cocycle with 4 discontinuities
Let us consider the R-valued cocycle a(1[0,β)(·)− β)− (1[0,β)(· − γ)− β)

with β < γ.
There are 4 discontinuity points: (0, β, γ, β + γ) with respective jumps

+a, −a, −1, +1.
Assume that β is such that there is a subsequence (qnk) and a constant

κ > 0 such that
qnk‖β − rα‖ ≥ κ, ∀ |r| < qnk . (2.3.14)

We apply the method of Theorem 2.3.10, with the subsequence (qnk). By
the above condition on β, in a cluster we can find either a single discontinuity,
or two discontinuities of type in (0, γ), (0, β + γ), (β, γ), (β, β + γ) with
respective sum of jumps: a − 1, a + 1, −(a + 1), −a + 1. The case of 3
discontinuities is excluded.
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Therefore, if a 6∈ {±1}, we have a non trivial essential value. When
a = −1, then the cocycle reads −1[0,β)(·)−1[0,β)(·−γ)+2β, and by Theorem
2.3.5 or the method of Proposition 2.3.7 we obtain a non trivial essential
value.

So for the classification of the cocycle a(1[0,β)(·)− β)− (1[0,β)(· − γ)− β)
the only case to be considered is a = 1. This leaves open the question of the
regularity of the cocycle 1[0,β)(·) − (1[0,β)(· − γ) for α of bounded type and
any β, γ.

We would like to mention that when β = 1/2 and α is of bounded type
the regularity (for each γ ∈ T) has been shown recently by Zhang [52] using
different methods. In fact, Zhang shows that the cocycle Φ = (1[0,1/2)(·) −
1/2,1[0,1/2)(·+ γ)− 1/2) is regular (whenever α is of bounded type).

The regularity of Φ follows also from Lemma 2.2.3 and Theorem 2.3.8
(see Corollary 2.3.9).

Example 3 The method of Theorem can be applied to the lower dimen-
sional cocycle: ϕ = 1[0,β) − 1[0,γ) − β + γ when (1, α, β, γ) are rationally
dependent.

2.3.4 On the regularity of Φd, d = 1, 2, 3

d= 1, Φ1 = 1[0,β) − β

Theorem 2.3.11. The cocycle Φβ = 1[0,β)− β is regular over any irrational
rotation.

Proof. If β ∈ Zα+Z, then Φβ is a coboundary (see Remark 2.3.1). Suppose
that β 6∈ Zα + Z. Then, by Lemma 2.3.3 and Proposition 2.3.7, there is a
positive integer in the group E(Φ) (cf. Remark 2.3.3). Therefore the cocycle
Φβ is always regular.

Remark 2.3.4. If β, α, 1 are independent over Q, then by a result of Oren
([37]) the cocycle defined by Φβ is ergodic.

d= 2, Φ2 = (1[0,β) − β,1[0,γ) − γ)

a) α of bounded type

Theorem 2.3.12. If α is of bounded type, the cocycle Φ2 = (1[0,β)−β,1[0,γ)−
γ) is regular.
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Proof. Recall that we constantly assume that β, γ, β − γ are not in Zα+ Z.
The proof is done in three steps:

Step 1. E(Φ2) 6= {0}; indeed, this follows immediately from the proof of
Theorem 2.3.4 applied to β /∈ Zα + Z (see Lemma 2.2.4 and Lemma 2.3.3).

Step 2. β = γ; then our cocycle is regular by Theorem 2.3.11.
Step 3. 0 < β < γ < 1. Now, we claim that for each a, b ∈ R the cocycle

a(1[0,β) − β) + b(1[0,γ) − γ) is regular. Indeed, we have already noticed this
property to hold if a or b is equal to zero. When a 6= 0 6= b, we obtain
a step cocycle with 3 effective discontinuities 0, β and γ. In that case we
apply Theorem 2.3.10 (see the application to cocycles with 3 discontinuities,
example 1 after the proof) to conclude that our scalar cocycle has a non-zero
finite essential value and hence is regular. The claim immediately follows.
The regularity of Φ is now an immediate consequence of Corollary 2.1.9.

Remark 2.3.5. Notice that we can apply other previous results to obtain an-
other, more complex proof of Theorem 2.3.12, which however can be applied
in other situations. Indeed, since α of bounded type, we apply Theorem 2.3.5
to conclude that the cocycle Φ is regular whenever β, γ, α, 1 are independent
over Q.

Otherwise, there are integers r, s, v, w not all equal to zero such that

rβ + sγ + vα + w = 0.

The case when β or γ belongs to Zα + Z is excluded (cf. Remark 2.3.1).
1) Assume that β, γ 6∈ Qα + Q and β − γ /∈ Qα + Q.
If s or r 6= 0, say s 6= 0 then γ = − r

s
β − v

s
α− w

s
. We apply Lemma 2.2.3

for β1 = 1
1β + 0

1α + 0
1 , β2 = −r

s
β + −v

s
α + −w

s
and β3 = −r−s

s
β + −v

s
α + −w

s

and obtain a subsequence (qnk) along which the wsd property is satisfied for
the discontinuities of Φ2. Then Theorem 2.3.8 applies.

2) Suppose s = 0 and γ /∈ Qα + Q, β ∈ Qα + Q. It is enough to
show that d1 = 2 in Theorem 2.3.4. By the proof of that theorem applied to
β /∈ Zα+Z, in view of Lemma 2.2.4, we obtainM : R2 → R2 a rational change
of coordinates such that MΦ2 = (ψ1, ψ2) has (1, 0) as its essential value. On
the other hand, by Lemma 2.3.2 (taking into account that detM 6= 0) and
remembering that under our assumption β and γ are independent over Q,
we obtain that β(ψi) /∈ Zα + Z, i = 1, 2. Therefore, again by Lemma 2.2.4,
L(β(ψi)) 6= {0}, hence by the proof of Theorem 2.3.4, d1 = 2.

3) The missing case β − γ ∈ Qα + Q (see the assumption in 1) and the
separate case β, γ ∈ Qα+Q) are covered by Lemma 2.2.3 and an application
of Theorem 2.3.8.
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b) α of non bounded type

For d = 2 and α not of bounded type the question of construction of a
non regular step function is not solved and the purpose of this paragraph is
to present some observations.

From Lemma 2.3.3 and Proposition 2.3.7, we know that E(Φ) does not
reduce to {0}. By Corollary 2.1.9, the regularity of the cocycle is equivalent
to the regularity of the one dimensional cocycles with 3 discontinuities: ϕ =
a(1[0,β) − β) − b(1[0,γ) − γ), where a, b are arbitrary real numbers. Since we
know already that regularity holds for b = 0, it suffices to consider ϕ =
a1[0,β) − 1[0,γ) − (aβ − γ). It is interesting to understand the particular case
γ = `β, with ` a positive integer. We will give some partial results on this
cocycle and ask questions.

First of all, there are special situations where one can conclude that the
cocycle ϕ = `1[0,β)−1[0,`β) is a coboundary (we assume that `β < 1). We use
the following result of Guenais and Parreau (with the notation of Section ??,
in particular Tx = x+ α):
Theorem 2.3.13. ([16], Theorem 2) Let ϕ be a step function on T with
integral 0 and jumps −sj at distinct points (βj, 0 ≤ j ≤ m), m ≥ 1, and let
t ∈ T. Suppose that there is a partition P of {0, . . . ,m} such that for every
J ∈ P and βJ ∈ {βj : j ∈ J}:
(i) ∑

j∈J sj ∈ Z;
(ii) for every j ∈ J , there is a sequence of integers (bjn)n such that

βj = βJ+
∑
n≥0

bjnqnα mod 1, with
∑
n≥0

|bjn|
an+1

< +∞ and
∑
n≥0

∥∥∥∥∑
j∈J

bjnsj

∥∥∥∥2
< +∞;

(iii) there is an integer k′ such that t = k′α−∑J∈P tJ where

tJ = βJ
∑
j∈J

sj +
∑
n≥0

[∑
j∈J

bjnsj

]
qnα mod 1.

Then there is a measurable function f of modulus 1 solution of

e2iπϕ = e2iπtf ◦ T/f. (2.3.15)

Conversely, when ∑
j∈J sj /∈ Z for every proper non empty subset J of

{0, ..,m}, these conditions are necessary for the existence of a solution of
(2.3.15).

Take ϕ = `1[0,β] − 1[0,`β]. With the previous notation, the discontinuities
are at β0 = 0, β1 = β, β2 = γ = `β (m = 2) with jumps ` − 1,−`, 1 re-
spectively and the partition P is the trivial partition with the single atom
J = {0, 1, 2}. We also have βJ = 0, ∑j∈J sj = 0.
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Suppose that the parameter β has an expansion in base (qnα) (Ostrowski
expansion, see [18]):

β =
∑
n≥0

bnqnα mod 1, with
∑
n≥0

|bn|
an+1

< +∞, bn ∈ Z. (2.3.16)

We can take b0
n = 0, b1

n = bn, b
2
n = `bn, so that ∑j∈J b

j
nsj = `bn − `bn = 0. In

view of Theorem 2.3.13, for every real s, the multiplicative equation e2πisϕ =
f ◦ T/f has a measurable solution f : T → S1. By using Theorem 6.2 in
[35], we conclude that ϕ is a measurable coboundary. Let us mention that
another proof based on the tightness of the cocycle (ϕn) can also be given.

Conversely, if ϕ is a measurable coboundary, then e2πisϕ = f ◦ T/f , for
s real has a measurable solution, and this implies that β has the expansion
given by (2.3.16).

Therefore we obtain:

Proposition 2.3.14. If ` is a positive integer with `β < 1, then the cocycle
ϕ = `1[0,β) − 1[0,`β) is a coboundary if and only if β satisfies (2.3.16).

Question: A question is to know if the cocycle ϕ = `1[0,β) −
1[0,`β) is regular or not, when β has an expansion β = ∑

n≥0 bnqnα

mod 1, with limn
|bn|
an+1

= 0 and ∑
n≥0

|bn|
an+1

= +∞. (Notice that by Theorem
2.3.13 it cannot be a coboundary.)

d= 3, Φ3 = (1[0,β) − β,1[0,γ) − γ,1[0,δ) − δ)

We will consider α of non bounded type and show that for some choice of
β, γ, δ we can obtain a non regular cocycles (cf. [7]). For r ∈ R, we denote
by ρr the translation x→ x+ r mod 1.

Theorem 2.3.15. Assume that Tx = x + α on the circle T. If α is not of
bounded type, then there exists β such that ϕ = 1[0,β) − 1[0,β) ◦ ρr is a non
regular cocycle for r in a set of full Lebesgue measure.

Proof. By a result of Merril ([34], Theorem 2.5 therein, see also Theorem
2.3.13 above from [16]), we know that, if β satisfies (2.3.16), then there is
an uncountable set of real numbers s (so containing irrational numbers) such
that we can solve the following quasi-coboundary multiplicative equation in
(s, β): for s ∈ R there exist |c| = 1 and a measurable function f : T → S1

such that e2πis1[0,β) = cf/f ◦ T .
For this choice of β and s (s is irrational), e2πis(1[0,β)−1[0,β)◦ρr) is a multi-

plicative coboundary for every r.
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For the integer valued cocycle ψr = 1[0,β) − 1[0,β) ◦ ρr we obviously have
E(ψr) ⊂ Z. On the other hand, s ψr(x) = n(x) + F (x) − F (x + α), with
F : X → R and n(·) : X → Z measurable. Therefore ψr(x) = s−1n(x) +
s−1F (x) − s−1F (x + α). It follows that the group of finite essential values
over T of the cocycle ψr is also included in the group 1

s
Z and therefore

E(ψr) ⊂ {0,∞}.
This implies that ψr is either non regular or a coboundary (cf. Subsection

2.1.1). The latter case cannot occur for a set of values of r of positive
measure, because otherwise, by Proposition 2.3.16 below, 1[0,β) − β is an
additive coboundary up to some additive constant c (and necessarily c = 0,
since the cocycle defined by 1[0,β) − β is recurrent). But this would imply
that e2πiβ is an eigenvalue of the rotation by α, a contradiction.

Therefore the cocycle 1[0,β) − 1[0,β) ◦ ρr is non regular for a.e. r ∈ R.

Proposition 2.3.16. Assume that K is a compact connected Abelian
(monothetic) group. Let T be an ergodic rotation on K. Let ϕ : K → R
be a cocycle. Assume moreover, than on a set of g ∈ K of positive Haar
measure we can find a measurable function ψg : K → R such that

ϕ− ϕ(g + ·) = ψg ◦ T − ψg. (2.3.17)

Then ϕ is an additive quasi-coboundary, i.e. ϕ = b+h◦T−h, for a measurable
function h : K → R and a constant b ∈ R.

Proof. For g ∈ K satisfying (2.3.17) and arbitrary s ∈ R we have:

e2πisϕ(x)

e2πisϕ(g+x) = e2πisψg(Tx)

e2πisψg(x) .

According to Proposition 3 in [32], for every s there exist λs with |λs| = 1
and a measurable function ζs : X → S1 such that e2πisϕ = λs · ζs ◦ T/ζs. By
Theorem 6.2 in [35], the result follows.

Remark 2.3.6. 1) If β satisfies (2.3.16), then either 1[0,β)−1[0,β) ◦ρr is non
regular or is a coboundary. We have shown that the latter case can occur
only for r in a set of zero measure. A problem is to explicit values of r for
which 1[0,β) − 1[0,β) ◦ ρr is not a coboundary.

2) If ψβ, 1
2

:= 1[0,β) − 1[0,β) ◦ ρ 1
2
is non regular, then ψ[ 1

2−β,
1
2 ) := 1[0, 1

2−β) −
1[0, 1

2−β) ◦ ρ 1
2
is regular. Indeed the sum of these two cocycles is 1[0, 1

2 )−1[ 1
2 ,1).

It can be easily shown that this latter cocycle has non trivial quasi periods.
The non regularity of ψβ, 1

2
implies that (ψ[β, 1

2 ))qn , the cocycle at times qn,
tends to 0 in probability, so that ψ[ 1

2−β,
1
2 ) has non trivial quasi periods.



2.4. Application to affine cocycles 49

Corollary 2.3.17. There are values of the parameters (β, γ, δ) such that

Φ3 = (1[0,β) − β,1[0,γ) − γ,1[0,δ) − δ)

is non regular.

Proof. Suppose that 0 < β < γ < δ and δ = β + γ. By applying
the map (y1, y2, y3) → y1 + y2 − y3, we obtain the 1-dimensional cocycle
1[0,β)(·)− 1[0,β)(·+ γ), which is non regular by Theorem 2.3.15 for a value of
the parameter β satisfying (2.3.16) and almost all γ. Lemma 2.1.3 implies
the non regularity of Φ3 for these values of the parameters.

Note that for d = 2, i.e. for two parameters (β, γ), an attempt to obtain a
non regular cocycle is to take γ = 2β and the linear combination: 2(1[0,β)(·)−
β)−(1[0,2β)(·)−2β) = 1[0,β)(·)−1[0,β)(·+β). We obtain the cocycle discussed
above (cf. Proposition 2.3.14) and the question previously mentioned above
is whether there are values of β such that it is non regular.

2.4 Application to affine cocycles
We consider now the affine cocycle

Ψd+1(x) := (ψ(x), ψ(x+ β1), ..., ψ(x+ βd)), where ψ(x) = {x} − 1
2 .

2.4.1 Reduction to a step function

By a straightforward calculation we have the following formula for the cocycle
ψ:

ψqn(x) = qnx+ qn(qn − 1)
2 α− qn

2 +M(x), (2.4.1)

where M is a (non 1-periodic) function with values in Z. It follows that, for
β ∈ [0, 1),

ψqn({x+ β}) = (2.4.2)

=
{
ψqn(x) + qnβ + (M(x+ β)−M(x)) if x+ β < 1,
ψqn(x) + (qnβ − qn) + (M({x+ β})−M(x)) if 1 6 x+ β < 2.

We will reduce the cocycle Ψd+1 to step cocycles using the group of finite
essential values.

Theorem 2.4.1. The group E(Ψd+1) includes ∆d+1 = {(t, ..., t) : t ∈ R},
the diagonal subgroup of Rd+1.
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Proof. Denote Si(x) = ρβi(x) = x + βi mod 1. Suppose that {qnkβi} → ci,
with ci ∈ [0, 1) for i = 1, . . . , d, and consider the measures

νk := ((ψ × ψ ◦ S1 × . . .× ψ ◦ Sd)qnk )∗(µ), k ≥ 1.

Since
∀x, y ∈ [0, 1), |ψqnk (x)− ψqnk (y)| < 2V (ψ) = 2

and
∫
ψ dµ = 0, we have that Im(ψ × ψ ◦ S1 × . . .× ψ ◦ Sd)qnk ⊂ [−2, 2]d+1,

so that νk is concentrated on [−2, 2]d+1.
It follows that we can select a subsequence of (νk) (still denoted (νk))

which converges to a probability measure ν (which is concentrated on
[−2, 2]d+1). We will show in what kind of a subset of Rd+1 the support
of ν is included. Consider the image of the measure νk via

F : Rd+1 → Rd, F (x0, . . . , xd) = (x1 − x0, . . . , xd − x0).

In view of (2.4.2), we obtain

F ◦ (ψ×ψ ◦S1× . . .×ψ ◦Sd)qnk (x) = ({qnkβ1}+M1(x), . . . , {qnkβd}+Md(x))

with Mi(x) ∈ Z, whence F∗νk is the measure concentrated on
({qnkβ1}, ..., {qnkβd}) + Zd.

Since νk → ν weakly, F∗νk → F∗ν (because all these measures are con-
centrated on a bounded subset of Rd+1). As {qnkβi} → ci, it follows that

supp ν ⊂ {(x0, . . . , xd) ∈ Rd+1 : xi − x0 = ci + ki, ki ∈ Z, i = 1, . . . , d}.

The set on the right hand side of this inclusion is equal to the union of sets
of the form {(x, x−(c1+k1), ..., x−(cd+kd) : x ∈ R}, hence of countably many
lines parallel to the diagonal ∆d+1. Moreover, the support of ν is uncountable
(because one dimensional projections of ν are absolutely continuous measures
- see [30]), whence it must be uncountable on one of these lines. In view of
Proposition 2.1.4, supp ν ⊂ E(Ψd+1) and since E(Ψd+1) is a group, we have
supp ν − supp ν ⊂ E(Ψd+1). However, the set ∆d+1 ∩ (supp ν − supp ν) is
uncountable, so because E(Ψd+1) is closed, we must have ∆d+1 ⊂ E(Ψd+1)
and the proof is complete.

Corollary 2.4.2. (ψ, ψ ◦S1, . . . , ψ ◦Sd) is ergodic whenever the set of accu-
mulation points of ({qnβ1}, . . . , {qnβd}) is dense in Td.
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Proof. From the proof of Proposition 2.4.1 it follows that with every accu-
mulation point (c1, . . . , cd) of ({qnβ1}, . . . , {qnβd}) we obtain a line {(x, x −
(c1 + k1), ..., x− (cd + kd) : x ∈ R} (and the smallest subgroup in which the
line is included) which is included in the group of essential values. Since the
set of accumulation points is dense and E(Ψd+1) is closed, it follows that the
only possibility is that E(Ψd+1) = Rd+1 which is equivalent to the fact that
Ψd+1 is ergodic.

By Lemma 2.1.2 the study of Ψd+1 reduces to that of the quotient cocycle
Ψd+1 +∆d+1 : T→ Rd+1/∆d+1. Using the epimorphism Rd+1 3 (y0, ..., yd)→
(y1 − y0, ..., yd − y0) ∈ Rd (whose kernel is equal to ∆d+1), the quotient is
given by the cocycle

Φd(x) = (1[0,1−βj) − 1 + βj)j=1,...,d. (2.4.3)

2.4.2 On the regularity of Ψd+1, d = 1, 2, 3.
1) d = 1,Ψ2 = (ψ(x), ψ(x+ β))

Applying Theorem 2.4.1 and the equation 2.4.3 we can reduce the cocycle
Ψ2 to the quotient cocycle (Ψ2 + ∆2) (x) = 1[0,1−β) − 1 + β. We conclude
using Theorem 2.3.11 that Ψ2 is regular over any irrational rotation T .

2) d = 2,Ψ3 = (ψ(x), ψ(x+ β), ψ(x+ γ))
As above we reduce the cocycle Ψ3 to the quotient cocycle

(Ψ3 + ∆3) (x) = (1[0,1−β) − 1 + β,1[0,1−γ) − 1 + γ). Recall that we have
seen in subsection 2.3.4 that for α with bounded partial quotients Ψ3 + ∆3 is
regular and therefore the affine cocycle is also regular when α has bounded
partial quotients.

3) d = 3,Ψ4 = (ψ(x), ψ(x+ β), ψ(x+ γ), ψ(x+ δ))

Theorem 2.4.3. There are values of the parameters (β, γ, δ) for which the
cocycle is non regular.

Proof. After reduction by ∆4, the result follows from Corollary 2.3.17.

2.4.3 Ergodicity is generic
We consider, as before, the cocycle ψ(x) = {x}− 1

2 and let Sβ(x) = x+ β be
the rotation by β ∈ [0, 1) on T.

Proposition 2.4.4. The set {(β1, . . . , βd) ∈ Td : (ψ, ψ ◦ Sβ1 , . . . , ψ ◦
Sβd)) is ergodic} is residual.
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Proof. Using Corollary 2.4.2, we only need to show that the set of (β1, . . . , βd)
for which the set of accumulation points of ({qnβ1}, . . . , {qnβd})n≥1 is dense
in Td, is residual (i.e. it includes a dense Gδ subset).

We take ε > 0 , c1, . . . , cd ∈ [0, 1) and consider the sets ÃN =
ÃN(c1, . . . , cd, ε) := ⋃∞

n=N An(c1, . . . , cd, ε), where

An = An(c1, . . . , cd, ε)
:= {(β1, . . . , βd) ∈ Td : ‖qnβ1 − c1‖ < ε, . . . , ‖qnβk − cd‖ < ε}.

Clearly ÃN is open and also dense. Fix 0 < ε` → 0. Then the set
⋂
`≥1

∞⋂
N=1

ÃN(c1, . . . , cd, ε`)

is a dense Gδ. Moreover this set equals

{(β1, . . . , βd) ∈ Td : (∃qnk) ({qnkβ1}, . . . , {qnkβd})→ (c1, . . . , cd)},

so the latter set is also a dense Gδ. Therefore the set
⋂

(c1,...,cd)∈Qd ∩[0,1)d

∞⋂
`=1

∞⋂
N=1

ÃN(c1, . . . , ck, ε`)

is a dense Gδ and the proof is complete.

Now, we show that the multiple ergodicity problem has a positive answer
for a.a. choices of (β1, . . . , βd). We will need the following classical lemma of
Rajchman.

Lemma 2.4.5. Let (X,B, µ) be a probability space, fn : X → R such
that fn ∈ L2(X,B, µ), ‖fn‖ < C, and fn⊥fm whenever n 6= m. Then
1
n

∑n
k=1 fk → 0 a.e.

Proof. It follows from the assumptions that ∑∞
N=1 ‖ 1

N2
∑N2

k=1 fk‖2
2 ≤∑∞

N=1
C2

N2 < +∞; hence, limN
1
N2
∑N2

k=1 fk = 0 a.e.
For n ≥ 1, let Ln := [

√
n]. We have L2

n ≤ n < (Ln + 1)2 and

| 1
n

n∑
k=1

fk| ≤
1
L2
n

|
L2
n∑

k=1
fk|+ 2CLn

n
−→
n→∞

0, a.e.

Proposition 2.4.6. For every irrational rotation Tx = x+α on T, we have

µ⊗d{(β1, . . . , βd) ∈ Td : (ψ, ψ ◦ Sβ1 , . . . , ψ ◦ Sβd)) is T -ergodic} = 1.
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Proof. By Corollary 2.4.2, all we need to show is that the set of (β1, . . . , βd)
for which the set of accumulation points of ({qnβ1}, . . . , {qnβd})n≥1 is dense
in Td, is a set of full measure. We will show more: the set of such d-tuples
for which ({qnβ1}, . . . , {qnβd})n≥1 is uniformly distributed (mod 1) in Td is
of full measure.

For almost all (β1, . . . , βd), the sequence (qnβ1, . . . , qnβd)n≥1 is uniformly
distributed (mod 1). Indeed, by Weyl’s criterium of equidistribution (see e.g.
[?]) it suffices to show that for almost all (β1, . . . , βd) in Td, for any nontrivial
character χ of Td, the Cesaro averages of the sequence (χ(qnβ1, . . . , qnβd))n≥1
tend to zero.

We have χ(qnβ1, . . . , qnβd) = exp(2πi(s1qnβ1 + . . . + sdqnβd)) for in-
tegers s1, . . . , sd. To conclude, we apply Lemma 2.4.5 to fn(x1, . . . , xd) :=
exp(2πi(qns1x1 + . . .+ qnsdxd)).





CHAPTER 3

Markov quasi-similarity

3.1 Markov quasi-factors of quasi-discrete spectrum
automorphisms

For each k ∈ N, we denote by Rk[X] the space of all real polynomials (of one
variable) of degree less than or equal to k.

We will need the following characterization of quasi-eigenfunctions ob-
tained by E. Lesigne in [33].

Theorem 3.1.1. If T ∈ Aut(X,B, µ) is totally ergodic then the following
two conditions are equivalent:

1. f ∈ (Ek(T ))⊥.

2. For µ-a.a. x ∈ X, for each P ∈ Rk[X] and each continuous periodic
function Φ on R, we have

lim
N→+∞

1
N

N−1∑
n=0

Φ(P (n))f(T nx) = 0.

Remark 3.1.1. As a matter of fact, the proof of the above theorem from
[33] shows that (2) implies (1) without the assumption of total ergodicity of
T .

The characterization given in Theorem 3.1.1, will allow us to generalize
Theorem 1.9.5 (see Theorem 3.1.4 below).

55
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Lemma 3.1.2. Assume that T ∈ Aut(X,B, µ). Assume moreover that
span

⋃∞
l=0El(T ) = L2(X,B, µ). If A ⊂ B is a factor such that T |A is totally

ergodic then T |A has quasi-discrete spectrum.

Proof. If T |A does not have quasi-discrete spectrum then there exists f ∈
L2(A) such that f ∈ Ek(T |A)⊥ for all k > 0. Since T |A is totally ergodic, it
follows from Theorem 3.1.1 that

lim
N→+∞

1
N

N−1∑
n=0

Φ(P (n))f(T nx) = 0.

for all k, P ∈ Rk[X] and Φ. In view of Remark 3.1.1, f ⊥ span
⋃∞
l=0El(T ).

Lemma 3.1.3. If T is totally ergodic, S is Markov quasi-factor of it, then
S is also totally ergodic.

Proof. The total ergodicity of T is equivalent to the non-existence of non-
trivial eigenvalues of UT of finite order. By Lemma 1.2.4, S cannot have such
eigenvalues neither, therefore it is totally ergodic.

Theorem 3.1.4. Markov quasi-factor of an automorphism with quasi-
discrete spectrum has quasi-discrete spectrum.

Proof. Let S be a Markov quasi-factor of an automorphism T which has
quasi-discrete spectrum. By Theorem 0.1.1 S is a (genuine) factor of (T ×
T × . . . , ρ) for some ρ ∈ Je∞(T ). By Remark 1.9.2

L2(X ×X × . . . , ρ) = span
⋃
l>0
El(T × T × . . . , ρ).

We can now apply Lemma 3.1.2 since S is totally ergodic by Lemma 3.1.3.
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3.2 Mixing Markov quasi-similar automorphisms which
are not weakly isomorphic

Let us fix T = Tσ a standard Gaussian automorphism which is GAG and
assume additionally

1
1− z /∈ L2(S1, σ) 32; (3.2.1)

Tσ is a mixing GAG. (3.2.2)

Firstly, we will describe how the two properties of σ can be achieved. We
start with Tη an arbitrary mixing GAG (for example, take any simple spec-
trum mixing Gaussian automorphism, [25]). Then we translate the spectral
measure η so that 1 belongs to the topological support of the translation
and then symmetrize the measure to obtain a GAG measure σ1 (see Propos-
ition 11 in [25]) with 1 in the topological support. We have, Tσ1 is mixing
because σ1 is still a Rajchman measure. Since 1 is in the support of σ1, in
view of Lemma 5 [24], there is 0 6= h ∈ Hσ1 so that h is not an L2(S1, σ1)-
coboundary. Finally, take σ = |h|2σ1 � σ1. Then 1 is not an L2(S1, σ)-
coboundary, which, in view of Remark 1.9.3, yields (3.2.1). Since σ � σ1,
Tσ is both GAG and mixing.

The process representation of T is denoted by (Pn)n∈Z and the Gaussian
space Hσ = span{Pn : n ∈ Z}. Set f = P0.

It follows from (3.2.1) that Te2πif is ergodic. In fact it is weakly mixing,
so mixing (see Corollary 1.9.7, Remark 1.9.4). As in [24], fix α which is a
transcendental complex number of modulus 1 and define the unitary operator
W : L2(S1, σ)→ L2(S1, σ) by setting (Wj)(z) = g(z)j(z), where g(z) = α on
the upper half of the circle and g(z) = α otherwise. This isometry extends
in a unique way to S ∈ Cg(T ).

We will consider now a class of automorphisms which are group extensions
of T given by cocycles taking values in (S1)Z:

T...,i−1,i0,i1,... := T...,exp(2πif◦Si−1 ),exp(2πif◦Si0 ),exp(2πif◦Si1 ),.... (3.2.3)

In particular, we will show that automorphisms T...,−1,0,1,2,... and T...,−1,0,2,3,...
are Markov quasi-similar but not weakly mixing.

32This is equivalent to saying that 1 is not an L2(S1, σ)-coboundary, or that P0 is not
a Gaussian coboundary.
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3.2.1 Coalescence of two-sided cocycle extensions, absence of
weak isomorphism

Remark 3.2.1. Assume that W : (S1)Z → (S1)Z is a continuous homo-
morphism. Then W = (. . . ,W−1,W0,W1, . . .), where Wi : (S1)Z → S1 stands
for the composition proji ◦ W of W with the projection proji on the i-th
coordinate. Moreover, Wi is a character of (S1)Z.

We recall that each character χ of (S1)Z is of the form

χ = χr1,...,rk
m1,...,mk

, χ(. . . .z−1, z0, z1, z2, . . .) = zm1
r1 · . . . · z

mk
rk

for ri,mj ∈ Z, 1 6 i, j 6 k.
It follows from [24] that we have the following: 33

the automorphism (3.2.3) is ergodic
(hence weakly mixing and even mixing)
for any sequence of integers (ik)k∈Z,
provided that ik 6= il whenever k 6= l.

(3.2.4)

Indeed, for no χ 6= 1 we can solve the functional equation

χ(. . . , exp(2πif ◦ Si−1), exp(2πif ◦ Si0), exp(2πif ◦ Si1), . . .) = ζ/ζ ◦ T.

Equivalently, we cannot solve the functional equation

exp(2πi(m1f ◦ Sir1 + . . .+mkf ◦ Sirk ))
= exp(2πif ◦ Sir1 )m1 · . . . · exp(2πif ◦ Sirk )mk = ζ/ζ ◦ T

which via Proposition 1.9.6 means that m1f ◦ Sir1 + . . . + mkf ◦ Sirk is
not a coboundary, equivalently it is not a Gaussian coboundary. Indeed,
m1f ◦ Sir1 + . . . + mkf ◦ Sirk is a Gaussian coboundary if and only if 34

m1α
ir1 + . . .+mkα

irk = k(z)(1− z) for some k ∈ L2(S1, σ) and since the left
hand side above is constant different from zero, 1 is an L2(S1, σ)-coboundary
(P0 is a Gaussian coboundary) contradicting (3.2.1).

Remark 3.2.2. The following has been proved in [24]: for all U ∈ Cg(T ),
j ∈ Hσ, n1, . . . , nt, r ∈ Z and pairwise distinct integers p1, . . . , pt

if n1f ◦ Sp1 + · · ·+ ntf ◦ Spt − f ◦ Sr ◦ U = j − j ◦ T
then t = 1 and n1 = ±1.

(3.2.5)

33 The ergodicity of T...,i−1,i0,i1,... also follows from the proof of (3.2.5), Proposition
1.9.6, the ergodicity of Te2πif and Remark 1.9.3.

34Recall that f in the spectral model corresponds to the constant function 1, while S
acts by multiplication by g.
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We rewrite the above as

n1(g(z))p1 + · · ·+ nt(g(z))pt − (g(z))ru(z) = k(z)(1− z),

where u ∈Hσ is of modulus 1 (and k ∈Hσ). If we put Q(z) = n1z
p1 + · · ·+

ntz
pt and l(z) = Q(g(z))− (g(z))ru(z) then

|l(z)| ≥
∣∣∣|Q(g(z))| − 1

∣∣∣ =
∣∣∣|Q(α)| − 1

∣∣∣ for z ∈ S1.

Suppose that t ≥ 2 or t = 1 with |n1| 6= 1. Since α is transcendental, the
modulus of Q(α) cannot be equal to 1 35. Therefore, there is a constant
A > 0 such that |l(z)| > A. Consequently, the function 1

1−z = k(z)/l(z) is in
Hσ, which contradicts (3.2.1).

Proposition 3.2.1. Assume that ī = (ik)k∈Z is a strictly increasing sequence
of integer numbers. If (ik)k∈Z is an arithmetic sequence (progression) then
Tī = T...,i−1,i0,i1,... is coalescent, that is, each endomorphism commuting with
Tī is invertible.

Proof. Suppose that S̃ is an endomorphism commuting with Tī. In view of
(1.9.7) and (1.9.8), there exist U ∈ Cg(T ), ζ : Xσ → (S1)Z measurable and
v : (S1)Z → (S1)Z a continuous algebraic epimorphism such that

v ◦ ψ/ψ ◦ U = ζ/ζ ◦ T, (3.2.6)

where

ψ = (. . . , exp(2πif ◦ Si−1), exp(2πif ◦ Si0), exp(2πif ◦ Si1), . . .).

The right hand side of (3.2.6) is a function taking values in (S1)Z such that
on the r-th coordinate we have

ζr/ζr ◦ T,

where ζ = (ζr)r∈Z. The left hand side of (3.2.6) is more complicated: it
is the multiplication of v ◦ ψ with (ψr ◦ U), where ψ = (ψr)r∈Z and ψr =
exp(2πif ◦ Sir). Now (see Remark 3.2.1),

Xσ
ψ−→ (S1)Z v−→ (S1)Z projr−−−→ S1.

Hence, in view of Remark 3.2.1, each coordinate of the left hand side of
(3.2.6) is of the form

projr ◦ v ◦ ψ(x) = ψp1(x)n1 · . . . · ψpt(x)nt

35Indeed, |Q|2(α) = 1, and |Q|2 is an integer coefficients polynomial of degree at least
one when t ≥ 2, so α is algebraic, while when t = 1, |Q|(α) = |n1| 6= 1.
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(for r ∈ Z and the choice of n1, . . . , nt, p1, . . . , pt depending on r.) Using
Proposition 1.9.6, we obtain

n1f ◦ Sip1 + · · ·+ ntf ◦ Sipt − f ◦ Sir ◦ U = `r − `r ◦ T

with some n1, . . . , nt ∈ Z, `r ∈ Hσ. By (3.2.5), it follows that t = 1 and
n1 = ±1. Therefore,

v
(
(zr)r∈Z

)
=
(
(zmrπ(r))r∈Z

)
, (3.2.7)

where π : Z→ Z and mr = ±1 for r ∈ Z, whence

mrf ◦ Siπ(r) − f ◦ Sir ◦ U = `r − `r ◦ T.

Since S, U ∈ Cg(T ), it follows that

mrf ◦ Siπ(r)−ir − f ◦ U is a coboundary.

and for r 6= s we obtain that

mrf ◦ Siπ(r)−ir −msf ◦ Siπ(s)−is is also a coboundary. (3.2.8)

However, in view of (3.2.4), T...,j−1,j0,j1,... is ergodic for any choice of the
sequence (jk) of distinct integer numbers. Therefore, (3.2.8) implies that

iπ(r) − ir = const and mr = const. (3.2.9)

By assumption, there exists b ∈ Z \ {0} such that it = i0 + tb for each
t ∈ Z, whence it+u = iu + tb. By (3.2.9), iπ(u) − iu = iπ(0) − i0. Therefore,

iπ(u) − i0 = iπ(u) − iu + iu − i0 = iπ(0) − i0 + iu − i0 = π(0)b+ ub.

On the other hand iπ(u)−i0 = π(u)b. Therefore π(u) = π(0)+u which means
that π is a translation on Z. By (3.2.7), v is an automorphism, so finally S̃
is invertible.

Similar arguments to those above apply to show the following criterion
for the isomorphism of the skew products of the form Tī.

Proposition 3.2.2. Given two strictly increasing sequences ī = (ik)k∈Z and
j̄ = (jk)k∈Z of integers, the two automorphisms Tī and Tj̄ are isomorphic
if and only if there exist m ∈ Z and a permutation π : Z → Z such that
jπ(k) − ik = m for all k ∈ Z.
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Absence of weak isomorphism of T...,−1,0,1,2,... and T...,−1,0,2,3,...

As an application, consider two extensions Tī, ī = (. . . ,−1, 0, 1, 2, . . .)
and Tj̄, j̄ = (. . . ,−1, 0, 2, 3, . . .). They are not isomorphic. Indeed, otherwise
there exists m ∈ Z and a permutation π : Z→ Z such that jπ(k) = m+ ik =
m+ k for all k ∈ Z. Therefore, jπ(−m+1) = 1, which is a contradiction.

On the other hand, it has been already noticed in Remark 1.6.1 that
whenever an automorphism R is coalescent and R is weakly isomorphic to R′
then R is isomorphic to R′. By Proposition 3.2.1, T...,−1,0,1,2,... is coalescent.
It follows that T...,−1,0,1,2,... and T...,−1,0,2,3,... are not weakly isomorphic neither.

Remark 3.2.3. Note that not every ergodic automorphism T...,i−1,i0,i1,... is
coalescent. For example, the non-invertible map

(x, z) 7→ (S2x, . . . , z−1, z0,
0
z2, z3, z4, . . .)

is an element of the centralizer of T...,−6,−4,−2,0,1,2,3,....

3.2.2 Markov quasi-similarity of two-sided cocycle extensions
Let T be an ergodic automorphism of (X,B, µ). We take ϕ : X → S1 so that
the group extension Tϕ is ergodic. Then assume that we can find S acting
on (X,B, µ), S ◦T = T ◦S (that is, S ∈ C(T )), such that if we set G = (S1)Z
and define

ψ : X → G, ψ(x) = (. . . , ϕ(S−1x),
0

ϕ(x), ϕ(Sx), ϕ(S2x), . . .)

then Tψ is ergodic as well. Put now T1 = Tψ and let us take a factor T2
of T1 obtained by “forgetting” the first S1-coordinate. In other words, on
(X × (S1)Z, µ⊗m(S1)Z) we consider two automorphisms

T1(x, z) = (Tx, . . . , z−1 · ϕ(S−1x),
0

z0 · ϕ(x), z1 · ϕ(Sx), z2 · ϕ(S2x), . . .),

T2(x, z) = (Tx, . . . , z−1 · ϕ(S−1x),
0

z0 · ϕ(x), z1 · ϕ(S2x), z2 · ϕ(S3x), . . .),

where z = (. . . , z−1,
0
z0, z1, z2, . . .). For n ∈ Z define In : X × (S1)Z →

X × (S1)Z by setting

In(x, z) = (Snx, . . . , zn−1,
0
zn, zn+2, zn+3, . . .).

Then In is measure-preserving and In ◦ T1 = T2 ◦ In. Therefore

UT1 ◦ UIn = UIn ◦ UT2 (3.2.10)
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with UIn being an isometry (which is not onto) and

U∗InF (x, z) =
∫
S1
F (S−nx, . . . , 0

z−n, . . . ,
n
z0, z, z1, . . .) dz.

Denote by l0(Z) the subspace of l2(Z) of complex sequences x̄ = (xn)n∈Z
such that {n ∈ Z : xn 6= 0} is finite.

Proposition 3.2.3 ([13], Prop. 3.1). There exists a nonnegative sequence
ā=(an)n∈Z∈ l2(Z) such that ∑n∈Z an = 1 and

for every x̄ = (xn)n∈Z ∈ l2(Z) if ā ∗ x̄ ∈ l0(Z) then x̄ = 0̄ 36. (3.2.11)

Let ā= (an)n∈Z ∈ l2(Z) be a nonnegative sequence such that ∑n∈Z an = 1
and (3.2.11) holds. Let J : L2(X × (S1)Z, µ ⊗m(S1)Z) → L2(X × (S1)Z, µ ⊗
m(S1)Z) stand for the Markov operator defined by

J =
∑
n∈Z

anUIn .

In view of (3.2.10), J intertwines UT1 and UT2 .
Denote by Fin = Z⊕Z = Z ⊕ Z ⊕ . . ., which is naturally identified with

the dual of (S1)Z. Let us consider the following two operations on Fin. For
A = (As)s∈Z ∈ Fin (only finitely many As 6= 0) we set

Â = (Âs)s∈Z =


As if s ≤ 0
As−1 if s > 1
0 if s = 1

and given B = (Bs)s∈Z ∈ Fin such that B1 = 0 we put

B̃ = (B̃s)s∈Z =
{
Bs if s ≤ 0
Bs+1 if s > 0.

Of course, ˜̂
A = A and ̂̃

B = B.

For A = (As)s∈Z ∈ Fin and n ∈ Z let

A+ n = ((A+ n)s)s∈Z,

where (A+ n)s = As−n for s ∈ Z. We have(
Â+ n

)
n+1

= Ân+1−n = Â1 = 0. (3.2.12)

36 (ā ∗ x̄)n =
∑∞
m=−∞ amxn−m.
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Assume that B = (Bs)s∈Z ∈ Fin and Bn+1 = 0; then the element

B̃ − n is the unique element C ∈ Fin such that Ĉ + n = B. (3.2.13)

Let ∼ stand for the equivalence relation in Fin defined by A ∼ B if A = B+n
for some n ∈ Z. Denote by Fin0 a fundamental domain for this relation.

Lemma 3.2.4 (cf. [13]). J has trivial kernel.

Proof. Each F ∈ L2(X × (S1)Z, µ⊗m(S1)Z) can be written as

F (x, z) =
∑

A∈Fin
fA(x)A(z),

where

A(z) = Πs∈Zz
As
s whenever A = (As)s∈Z and fA ∈ L2(X,µ).

Note that ∑A∈Fin ‖fA‖2
L2(X,µ) = ‖F‖2

L2(X×(S1)Z,µ⊗m(S1)Z ). Since

UIn (fA ⊗ A) (x, z) = (fA ⊗ A) (In(x, z)) = fA(Snx)(Â+ n)(z),

we have
JF (x, z) =

∑
n∈Z

∑
A∈Fin

anfA(Snx)(Â+ n)(z).

By (3.2.12), (Â + n)n+1 = 0, so by changing “the ”index”: substituting
Â + n =: B and using (3.2.13) (from which it follows that A = B̃ − n), we
obtain

JF (x, z) =
∑

B∈Fin

∑
n∈Z,Bn+1=0

anfB̃−n(Snx)B(z) =
∑

B∈Fin
F̃B(x)B(z),

where F̃B(x) = ∑
n∈Z,Bn+1=0 anfB̃−n(Snx). For every B ∈ Fin0 and x ∈ X

we define ξB(x) = (ξBn (x))n∈Z by setting

ξB−n(x) =
{
f
B̃−n(Snx) if Bn+1 = 0

0 if Bn+1 6= 0.

Therefore, for k ∈ Z

F̃B+k(x) =
∑

n∈Z,(B+k)n+1=0
anf ˜B−n+k(S

nx)

=
∑

n∈Z,B(n−k)+1=0
anf ˜B−(n−k)(S

−(k−n)(Skx))

=
∑
n∈Z

anξ
B
k−n(Skx) = [ā ∗

(
ξB(Skx)

)
]k.
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Suppose that J(F ) = 0. It follows that for all k ∈ Z and B ∈ Fin0 we have
[ā ∗

(
ξB(Skx)

)
]k = F̃B+k(x) = 0 for µ-a.e. x ∈ X, whence a.s. we also have

[ā ∗
(
ξB(x)

)
]k = 0. Letting k run through Z, we obtain that ā ∗

(
ξB(x)

)
= 0̄

for µ-a.e. x ∈ X. On the other hand, ξB(x) ∈ l2(Z) for almost every x ∈ X.
In view of (3.2.11), ξB(x) = 0̄ for every B ∈ Fin0 and for a.e. x ∈ X, hence
f
Ã

= 0 for every A ∈ Fin with A1 = 0. It follows that fA = 0 for every
A ∈ Fin, consequently F = 0.
Lemma 3.2.5 (cf. [13]). J∗ has trivial kernel.
Proof. Let

F (x, z) =
∑

A∈Fin
fA(x)A(z).

Then

U∗In (fA ⊗ A) (x, z) = fA(S−nx)
∫
S1
A(. . . , z−n, . . . ,

n
z0,

n+1
z ,

n+2
z1 , . . .) dz.

It follows that

U∗In (fA ⊗ A) (x, z) =
{
fA(S−nx)Ã− n(z) if An+1 = 0

0 if An+1 6= 0.

It follows that

J∗F (x, z) =
∑

A∈Fin

∑
n∈Z,An+1=0

anfA(S−nx)Ã− n(z)

=
∑

B∈Fin

∑
n∈Z

anfB̂+n(S−nx)B(z)

=
∑

A∈Fin,A1=0

∑
n∈Z

anfA+n(S−nx)Ã(z).

Furthermore,

J∗F (x, z) =
∑

A∈Fin0

∑
k∈Z,(A−k)1=0

∑
n∈Z

anfA+n−k(S−nx)Ã− k(z)

=
∑

A∈Fin0

∑
k∈Z,(A−k)1=0

[ā ∗
(
ζA(S−kx)

)
]kÃ− k(z),

where ζA(x) = (ζAl (x))l∈Z is given by ζAl (x) = fA−l(Slx).
Suppose that J∗(F ) = 0. It follows that [ā∗ζA(S−kx)]k = 0 for every A ∈

Fin0 and k ∈ Z with Ak+1 = 0 and for a.e. x ∈ X. Hence ā∗
(
ζA(x)

)
∈ l0(Z)

for µ-a.e. x ∈ X (the only possibly non-zero terms of the convolved sequence
have indices belonging to {s ∈ Z : (A − 1)s 6= 0}). Since ζA(x) ∈ l2(Z), in
view of (3.2.11), ζA(x) = 0 for every A ∈ Fin0 and for µ-a.e. x ∈ X. Thus
fA = 0 for all A ∈ Fin and consequently F = 0.
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Markov quasi-similarity of T...,−1,0,1,2,... and T...,−1,0,2,3,...

We apply results of this subsection to T a mixing GAG, ϕ = exp(2πif)
and S coming form extension of unitary operator W given by transcend-
ental α. By Lemmas 3.2.4 and 3.2.5, there exists an operator with dense
range and trivial kernel intertwining the Koopman operators associated to
T...,−1,0,1,2,... and T...,−1,0,2,3,.... It follows that T...,−1,0,1,2,... and T...,−1,0,2,3,... are
Markov quasi-similar.

Finally, we obtain following theorem

Theorem 3.2.6. The automorphisms T...,−1,0,1,2,... and T...,−1,0,2,3,... are mixing
and Markov quasi-similar but are not weakly isomorphic.

Proof. By assumption (3.2.2), T is mixing. In view of (3.2.4), both its group
extensions T...,−1,0,1,2,... and T...,−1,0,2,3,... are ergodic, hence they are also mix-
ing. Moreover, it was shown that they are Markov quasi-similar but not
weakly isomorphic.

Remark 3.2.4. Recalling that a Gaussian mixing automorphism is mixing
of all orders, from the result of Rudolph about multiple mixing of isomet-
ric extensions (see [44]), it follows that the automorphisms T...,−1,0,1,2,... and
T...,−1,0,2,3,... are also mixing of all orders.

Remark 3.2.5. In the beginning of the section, the measure σ was chosen
to satisfy (3.2.1) and (3.2.2). Here is another way of specifying it. For a
mixing GAG Tη let σ = η ∗ η 37.Then T = Tσ is also both mixing and
GAG (the latter is unpublished result of F. Parreau). Since the Fourier coef-
ficients of σ are non-negative, Te2πiP0 has countable Lebesgue spectrum in
the orthocomplement of L2(Xσ, µσ) ⊗ 1 (see Corollary 4 in [24]). Hence P0
is not a Gaussian coboundary and the conditions (3.2.1) and (3.2.2) hold.
Moreover, ‖(P0)n‖2

L2(Xσ ,µσ) grows linearly with |n| (recalling that (P0)1 = P0,
(P0)n+1 = (P0)n + P0 ◦ T n for all n ∈ Z). Therefore, using the same argu-
ments as in [48, Lemma 4.2], we obtain that the automorphisms T...,−1,0,1,2,...
and T...,−1,0,2,3,... in Theorem 3.2.6 have countable Lebesgue spectrum in the
orthocomplement of L2(Xσ, µσ)⊗ 1.

37By η ∗ η we mean the convolution of the measure η with itself, i.e.
∫
S1 f(z)dη ∗ η(z) =∫

S1

∫
S1 f(vω)dη(v)dη(ω).
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